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INTRODUCTION

5 \:\'
What This Book Is About NS ¢

N/

You and I (and cveryone else) are imbedded .:lh«a complex
of events which, for lack of a better word, I IJ] call the veal
world. Sometimes we find the situation to oud iking: at other
times the real world becomes a rather unpleasant place. We try
to improve our lot by taking variousgaCtions which we (hink
will avoid pain or lead to pleasurg¥ Oncasmnall\ we are laced
with a choice of actions,,and. it dshiot ,at once obvious which

www .dbraulibray
action will lead to a real woﬂd Ermt w1]1 be more cungenial
in the future.

The process of scle(,tmff he action from a number of alterna-
tive courses of action La\;hat Ishall incan by decision,

This book does x{ot deal with specific decisions. T do not
propose to tell you what to drink or whom to marry, Instead
I am going te disCuss how to make decisions.

At this p«iin‘t you might very well snort indignantly and de-
marl tod “Rl‘lo\\ why a college professor thinks he can tcll you
how g™ 1ake decisions. Let me hastily add that all I shall try
to, (\lo s (o describe and explain a recently developed method
tor- making decisions (not my invention at all but the work ol

\Oth(r -and much clevercr—men) which has been called Sia-
tistical Decision.

The word statistical may call forth unpleasant associations
in the minds of many readers. It may recall the ponderous
volumes of nosc counts issued by government agencies, or the
dreary rcams of quotations published by corporations, or even

i



2 DESIGN FOR DECISION

(though I hepe not) the absurd claims of advertising agencics.

Some readers may therefore be surprised to learn that the sub-
ject of statistics extends beyond the collection and tabulation of
data; there is more to it than the calculation of averages and
correlation coefficients. A statistician today may be called upon
for advice on the design of a hybrid-corn yield test, the improve-
ment of techniques for chemical analysis, the evaluation ol a\
new wonder drug, or the purrlnse of haled wool.

Once upon a time, it is true, a statistician was a man ith
some ability at arithmetic and a knowledge ol a harld‘ful of
tricks of the trade. But things have changed in thesast fifty
years; the isolated tricks of the trade were foupdxo be parts
of a much broader structure which is called ¥ eoreiical Sta-
tisiics. Not only did this theory lead to a be\tter understanding
of the original tricks, but it alse led tu{he discovery of more
powerful new techniques. \Y;

These new devices were found to Ye valuable in many and
varied applications. Ty, theqpert @fg‘[-@"élrl 920 to 1940 statistical
methods quictly revolutlomzed many fields ol science {espe-
cially the life sciences) ; moreover_. they were applied beyond the
academic bOIlHdd‘I’l(‘S—{lﬂ\aﬂTiClllI'Lll’(:‘ industry, and commerce,

What then took place constituted a sort of chain recaction.

The ncw applicatiens, especially those connected with the
inspection andiiésting of products, led to new theories, and
statistics gTCW\SO fast that there was no place in the original
theocry m\“}urh to fit the new discoveries. In the late 1930°s
the g"rm\;mg pains became acute, and there were a number of
very Jeated controversies.
\]}Jst belore and during World War 11 a new concept began
to emerge—the concept of Statistical Decision. Not only was
this new concept comprehensive enough to include all that is
currently coverced in the subject of statistics, but in addition it
involved ideas from other subjects such as the theory of games,
cost accounting, information theory, logic, economics, and al-
most anything else you care to name.

Consequently, the name Statistical Decision is something of
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a misnomer. Many people other than statisticians have grappled
with the problem of decision and have contributed important
ideas. The statisticians arrived on the scene rather late {and
more or less accidentally). They translated the cxisting ideas
into statistical terms, added some ideas of their own, and then
assembled all of these concepts into an integrated mechanism
tor making dccisions. This decision machine has already heen
applicd to such diverse purposes as military strategy and hetfihg
on horses,' and its use in these (ields is only the begim:lj\f“fo?‘h.\

I cannot blame you if, at this point, you scratch, yeur head
and murmur, “All this looks suspiciously like thq‘f)l’&l ballyhoo.
If Statistical Decision is such a world-shaking affdir why haven’t
I felt some of the tremors?” You may notshave hcard of the
statistical “‘revolution” that I menuoned aarlier, and, to digress
a bit, let me explain wh) you may nON\laie heard of these mat-
ters. The main reason is that publgations on the subject are
written only for fellow specialistsi{and even these worthies have
trouble undcrstandmg@hgpaaﬁgia@@ giahe twenty years before
these ideas reach other sczf;ni,’zsts in a comprchensible form and
even longer before theyare taught to siudents. Specific tech-
niques (in cookbook/form) may be transmitted more rapidly,
but the ideas difluse very slowly.

A few scientists)it is true, have tried to write for the public,
But while the¥gublic has eagerly accepted the television sets,
wonder drugs, and bigger strawberries that scientilic research
has produced, they have been profoundly uninterested in the
fundamemal ideas, the Scientific Method, that have madc this
'resaarch fruitful. People must have the very latest electronic

\padget, but they cling tenaciously to ideas and methods of think-
ing that were obsolete three hundred years ago.

This delay in the transmission of ideas is, I belicve, one of the
factors which has led our civilization to its present crisis. More-
over, the alrcady dangerous situation is steadily getting worse

1Sprowls, Clay, "Statistical decisions by the method of minimum risk: An
application,” Journal American Siatistical Associgtion, Vol. 45, No. 250, June
14650,



1 DESIGN TOR DECISION

because it is increasingly dillicult to translate the language ot
scie knglish,

In this book I have tricd to make such a transiation, but my
task has led me into a curious paradox. Statistical Decision can
be viewed as a complex machine. Into this machine is fed m-
formation from the real world, and out of this machine conies
a recommendation for action in the real world. But the basi,
mechanism of the machinc itself is this: "The real world jrob-
Iem is transtated into a symbolic language, the problem ’is\'sbi?){-'d
in symbolic form, and finally the answer 15 translakecj{r)nck 110
the real world decision. ~‘ M

Not only is the symbolic language an imqg:fﬂi‘ part of the
machine, but it is the usc of this language thdgCnables Statisti-
cal Decision to avoid the muddled thin\k\tnir and verbal con-
fusion of other processes of decision! It\s therefore impossible
to omit all mention of the symbolicy Ianoudcre but in the body
of the text there will be no marhé:mancs beyond high school
algebra. W dbrauhhrary org.in

Since T am writing this bodk¥n everyday language, the reader
must not expect to findghhueprints which will enable him to
construct his own De(ision-Maker. Such blucprints can only
be given in the syml\a}lc language. I will give references to pub-
lications which de\give the blueprints, however, and I hope that
some readers @ill be stimulated enough to go ahead on their
OWTIL. ~\\

All th&{"f will try to do is to describe the Decision-Maker
and te. ’prlail‘l some of the principles on which it operates. Tor
thc‘sé purposes the decision-making machine will be taken apart
So/that the functioning of the pieces can be studied separately.
Then it will be reassembled, and its operation in somec fairly
simple situations will be described.

Some readers may be primarily interested in the applications.
Routine decisions occur in various phases of administration
(purchasing and selling, control of manufacturing, assembly,
and inspection processes, etc)), and Decision-Makers have al-
ready demonstrated their utility in these applications. Similar
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routine decisions also occur in applicd research and testing
programs and in the day-to-day operation of commercial and
governmental agencies.

Readers who have already had experience with statistical ap-
phications may find that Statistical Decision provides a vantage
point from which it is possible to see all the scattered techniques
in their proper perspective. It then becomes much easier to
understand when a given methodology should, or should fot,
be used and what interpretation can be given to the regitis.

Some rcaders may be intrigued by the ideas of SLaLﬁ:é’i‘ca“}' De-
cision because they represent a new advance towarghthe solution
ol a basic human problem. The principles hayéya wide scope;
they apply to the cheice of a [oreign p(';Iicy:@ to the private
decisions that we all must make, They ar¢\it you like, philo-
sophical principles, a way of looking at/ghe world in which we
live, a guide to action in that worldy ,\
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CHAPTER 7

HISTORY OF DECISION

2 AN

Natural History

N

Man is a decision-making animal. This trait séts him apart
from his friends and relations in the animal wo\d It is prob-
abhly responsible for his domination of this‘glanct, but it also
may be responsible for many of his gr@¥ hairs, ulcers, and
neuroses. The following outline of history, from Qoze to Oak
Ridgc, is intended only to 1nd1cate haéw Statistical Decision is
rclated to other dec1smn m%ll‘;ﬁr}mns A real history of decision
would be worth domg—— it J.t ‘woull()j take more than the next
dozen pages!

To a limited extent all\llvmg organisms encounter the prob-
lem of decision. Ev r\a ‘one-celled organism has to act; it as-
similates particlesNin’its immediate environment, and these
particles may eitlief" be nutritious or poisonous. The biological
compaosition, Q:E the organism and the laws of chemistry and
physics éﬂ‘mne whether a given particle is assimilated or
not. Hefie ‘the decision is made automatically by a biological
mechairism,

“As/the organisms become more complex and acquire eyes
and legs and a nervous system, the animal may face more
complicated decisions. Tor example, it may have to decide
whether to attack another animal or run away {rom it. How-
ever, the biological equipment of the animal is good encugh
to enable him to make his decisions without assistance from
mathematicians and philosophers,

Scientists have studicd the decision processes of various ani-

o



HISTORY OF DECISION 7

mals by making thcm solve puzzles or run through mazes. A
typical maze consists of a pathway with several forks, and the
arimal must decide which dircction to try. If the animal follows
the right routine—say LTFT, RIGHT, LEFT, LETT—it i3
rewarded by some food. Any other choice will lead it into
blind alleys which may sometimes produce a penalty such as an
electric shock, A~
The biclogical cquipment of the animal includes a huiktin
Decision-Makcer which enables the animal to solve the Mz,
The first few times the animal runs “at random”™ Qr~ pu' pose-
lessly” and succeeds by trial and error. After émmuh trials,
however, the animal learns to run through t}q,\ nmiaze without
making mistakes. A second mcchanism fepdecision has then
come into play—memory. N
Although the biological Decision- \Lgkers seem adequate for
animals under natural conditions (m even [or a mare) . ingen-
ious human beings have densed smlatlom which will resnlt in
a breakdown ol Ll}mnﬁg&lﬂm}.&)gng&t £one such method is to
let a guinea pig learn a pracedure for getting food and then to
double-cross the poor g‘:‘rea.t'ure by putting a glass plate or an
electrically chm‘gcd’@tﬁi’p ol metal in its path. In this way, ex-
perimenters have sueceeded in making a guinea pig (which Is
naturally the niost inoffensive of animals) become a vicious,
aggressive litele Mheast. The consequent behavior of the guinea
pig 1esen]bhss that of a ncurotic human; it cannot make up its
nuind, i\nl approach the food and then turn away at the last
momcnt {even though the barrier has been removed), and it
”“~1N “ru:'pcat this indecision again and again.

U ) In all fairness to the guinea pig it should be added that it
took vears of intensive experimentation to learn how to make
this animal misbehave as badly as 2 human being. The biclogi-
cal Decision-Makers of our evolutionary cousins are remarkably
well buile!

It the inscct world potentials for very complex forms of be-
havior, such as nest-building and web-spinning, are built into the
genetic material of the animal. Our own closest relatives, the
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other mammals, scem to lack some of these elaborate instintctive
Decision-Makers, and humans are even worse off in this respeet.,

In the world of mammals, most behavior scems to be learned
by the young cither from parental behavior or by trial and
error. These systems have a great advantage and a constderable
disadvantage at the same timne. "The advantage lics in the grealer
flexibility of the Decision-Maker, The mammals have the ops
portunity to develop new and better responscs to various »uua-
tions. Consequently, they can adapt much more rapldl\" O
new environments than organisms with completely bidili-in
and therelore unchangeable responses. The dlnd\‘anmoe lics
in the necessity of transmitting the successful 111:\‘1 espomu to
the progeny, who otherwisc are practically hclpless Many of
the mammals have overcome this disadydnfage through the
raechanism of the family. In dogs angd. {@ts for example, the
parcnts teach the young animals the seu‘ets of survival, TTuman
scientists have interfered with thi§, process by removing the
young animals [rom ledﬂrenhﬁ:-&qmmg thus isolated from its
heritage will sharc its cage J\'kth mice or birds and will not
harm them (a mode of beflavior which would not he practical
under natural (,ondiLio:ﬁ's}

The success of the\h’tmmdhdn way of lile indicates that the
advantages of the' thore flexible Decision-Makers outweighed
the disadvantages”’Moreover, within the hierarchy of mammals
the trend “:@'}‘0 replace the biological Decision-Maker by rudi-
mentary \ku}tural Decision-Makers. By the time human beings
arrived\on the scene, the biological Decision-Maker was nearly
lixA-—onlv vestiges remained. In fact, man is a decision-making
animal because of a biological deficiency!

Cultare

Becanse of an inadequate hbiological Decision-Maker, the
cducation of the young is, necessarily, a major occupation of
the human animal. Perhaps as a consequence, man developed a
new method for transmitting behavior patterns—language. An-
other result of the very long training period required to develop
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the human Decision-Maker was the emergence of more or less
permanent social groups. 'This development, in turn, combined
with the tremendous flexibility ol the human Decision-Maker,
has produced the remarkable variety of cultures that exist to
this day.

The advantage of cultural patterns as opposcd to a simple
parent-child transmission lies in the pooling of expericnce lhit
is obtained. Instead of the responscs being hmited to theex-
perience of the individual or of his family, the cultural «pa:l;‘tern
combines the cxperience of hundreds of i1‘1di\-'iduzgls'\.:\1n’ this
way the young get advice on appropriate actionsdoytake in a
great variety of situations. _ s,

On the other hand, the experience may not :ﬂl\be concordant,
and contradictory instructions may put aSevcere strain on the
Decision-Maker. If a young man recet éone set of rules con-
cerning scxual behavior from his; ‘c’(jmpanions and virtnally
the opposite set of instructions i;ljp’m'priests or elders, he then
may not kn_ow “rhatw%\?wdcﬁ)'r aﬁfﬁbﬁ‘@;}l’g*"aﬁl to cxhibit neurotic
symptors like thosc of the gumea pig.

I{ success is measureds in® terms of population density, the
cultural l)ecision—_\ial:;eiﬁ; were, on thie whole, a big success. The
flexibility of respo@e' c¢nabled man to improve his hunting
methods and togdiscover agriculture. The cultures preserved
the discoverigsi@nd transmitted them to successive generations.
Cities and relatively stable socictics becamc possible and this in
turn pa\@a‘fthe way for the growth of civilizations.

The"}lecision problems presented by civilizations became
mg)ﬁef'complex, however, and ncither the biological nor the
simipler cultural Decision-Makers were adequate to handle
them. The increasing degree of specialization which civiliza-
tions made possible provided a solution. A class of specialists
arose whose job was making decisions.

The cmergence of such a group represented a simple solution
to the problem. The process of making decisions was becoming
a greater and greater chore. If the decisions could be received
from someone clse, however, the individual could be freed from
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this chore. It is not surprising that such an idea bad a great deal
of appeal and was adopted by nearly all the early civilizations
Nor has the idea lost its carly appeal; businessimen {as well 25
Sacialists} have adopted the pyramid of organization that is
implicd by this solution.

The principle of referring decisions to a special class of
Decision-Makers posscsses many potential advantages. The
specialists so created may indeed make better decisiong, e
cause they can receive special training and gain exper mm, in
making decisions. Moreover, by making dccisions tor a umun
they may be able to coordinate actions to obtam Solutions
which would be impossible for the 1r1(11x1d11al\F01 example,
they may be able to solve the drinking watcer gk oblem for a large
group of citizens by having a dam consgructe
action which would not be possible [orlan indi\-'idl.lal.

There is another subtle advantageypossessed by the profes-
sional Decision-Maker—he thinks,about the problems of other
individuals. It is tr(,m,\mﬂl’}déammmtmyakg mdecision when some-
one else must bear the consequences.

The disadvantages of #iis solution to the decision problem
need no claboration 1€se. All of us have had cxperience with
benevolent l)ulC&U(‘N\lES and ruthless tyrannies.

The indiv 1(1931 J8 concerned, and rightly so, with the reper-
cussions of dewisions on himself, and he ¢valuates the conse-
quences of\':a\derision in terms of his own pleasure and pain.
It he all\w someone ¢lse to make his decisions and things furn
out w:ry badlv he will then lose confidence in the pr ofessional
D\edsmn Maker. He may now wish to make his own decisions,

\nt:l in this ¢vent the professional Decision-Makers may employ
their supcrior resources Lo enforce their decisions. IE the dis-
satisfaction is sufliciently widespread and well organized, the
decision-making pyramid may be shattered by revolt,

Most recorded history is a chronicle of the specialized De-
cision-Makers—kings, generals, and priests. Judging by the
record, these prolessionals botched their job miserably. It is
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hardly surprising that a distrust of professionals eventually de-
veloped into a creed. This creed exalted individual decision
and insisted that it was the privilege, responsibility, and right
of each individual to make his own decisions. But freedom in
itsell does not solve the problem. Even with a free choice the
individual may select a course of action which will lcad to dis-
astrous personal consequences. Thus it becomes cven more im-
portant [or the individual to learn the principles underlying
successful decision as they have been slowly and painlflly de-
vcloped over the centuries. O

27N
{ %

Devils K7,
N\

With the evolution of more elaborate ml'It;\Llral devices to
replace the inadequate biological decision Wechanisms and the
appearance of classes of prolessional, Decision-Makers, some
systematization of the process wasshCéssary to prevent chaos.
One of the greatest dangers was the/presence of contradictions
within a given system because s we have scen, this complica-
tion has often led td the b{éﬁ%ﬁﬁ\{ SBthe Decision-Maker.

Since the number of sititations requiring decision was very
large, even in simple culturcs, and since this number was multi-
plied manyfold w'l;}:('t.he advent of citics and civilizations, it
became increasidgly difficult to specify in detatl the appropriate
course of actipfy for every situation.

As a resulidof this multiplicity of situations, a tremendous
strain vxa:"s\p’laced on the individual and even on the collective
memof i In the primitive cultures that are the joy of the
ar}r{{mpologists, the number of ritual responses that a well-
“trained medicine man must know may number in the thou-

\ﬁnds. Learning these rituals 15 a feat requiring much more
perseverance and memory than the rituals required ol graduate
students in a modern college. Moreover, it is vitally important
that the ritual responses be remembered exactly since any
deviation will ruin the entire performance and can lead to nega-
tive or even dangerous conscquences. This last provision is
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necessary since the development of multiple responses can lead
to disaster insofar as the Decision-Maker is concerned.

The task was considerably eased with the invention of writlen
language. The storage of symbols on stonc, wood, or papyrus
was much casier than their storage in the human manory. but
while the invention of writing greatly simplified the process ot
transmitting accumulated past experience to future generarions
it did not solve the problem altogether. There remaincd, IORE-
over, the possibility of contradictions arising within the gwsfeni
among the various ritual responses. . O

To meet this pressing need for simplicity. the int¢Tectual de-
cision systerns came into vogue. Instead of dealngivitl'l a large
number of specific Tesponses, certain broad puaciples were ce-
veloped which would enable a decision to\he made in a large
number of different situations. Altho’l‘}g’h. we ave inclined to
sneer at the systems of magic which ywere developed, they repre-
sented a tremendous step forwardy

In order to take tlﬁmﬁlqlg,-@!gﬁgpgggggman (like the scien-
tists today) had to constructan abstract pictare, or model, of
the real world. It is ha¥d@ly surprising that man creared the
pictures in his own iméﬁ'g\a and that he attributed to the objects
and phenomena qf the real world desires, passions, and motives
corresponding j:o:lhis own. These worlds of anthropomorphic
devils and god§”greatly simplified decision. Desirable conse-
quences c’o{lil}i'be obtained cither by insuring the cooperation of
the gogl%arid devils ot by taking magical protective rcasurcs.
Sinq@};hese deities controlled the course of future events, it
wdsionly logical to take them into consideration if this model

\gf“ the real world was accepted.

This anthropomaorphic model of the real world cannot be
branded as either right or wrong. A model must be judged by
the results of directed action taken in accordance with the
model, We now believe that incantations and witcheralt ave
not effective actions to take to insure desirable conscquences
such as good health, and we have various public health statistics
to back un this contention.
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Not all the rituals were ineffective, however. The Jewish
dictary laws are generally in accordance with public hcalth
practices that would be applied by scientists 1N @ warm country,
such as Jerasalem, if no refrigeration were available. Simnilarly
the practice ol boiling drinking water performed as a ritual by
some Seuth American Indian tribes in order 1o drive out the
devils would have the approval of a modern medical scientist,
although he would have some fancier names for the “dgvis”
that arc being exorcised. R\,

The Devil theory of the real world has the advantagé.(\)[ being
simple, comprehensive, and casily understood, ang( Ttcontinues
to be a very popular theory in the modern wofld To be sure
the names of the devils have been modificdi they are now
labeled “alcohol,” “Communists,” “Capitalists,” or given a dil-
ferent political, racial, or geograpl'licql.\’(&bel.

Starting from a Devil theory, pthe professional Decision-
Makers wove claborate, and somelinies beautiful, models of the
real world. From tlliﬁd@t&ﬂ‘éﬁj‘ﬁﬁ%ﬂ%f@iﬁ“m of the real world,
elahorate codes of behaviorsere constructed, and cven in non-
codified situations a decisioh could be made on the basis of
certain principles. Cextain possible lines of action could be
ruled out as likely%o incur the wrath or disfavor of the deities
who conLrolled,ei-'el'lts, and therefore such actions must lead to
unpleasant coséquences for the individual. On the other hand,
diﬂenrnt'l\iﬁeé of action would please the gods or frustrate the
devils, dud a most effective action could be chosen on that basis.

While the layman might become acquainted with parts of
_ilEyihtellectual superstructure, a real understanding and appre-

\c}:;tion required long and difficult training. Hence, on really
complex decisions, it was necessary to consult the professional

Decision-Maker {or at lcast to obtain his approval for a con-

templated action}.

The trade of Decision-Maker admits one serious handicap—
if disastrous consequences befall an officially approved decision,
the layman is likely to blame the specialist whom he has con-
sulted. Part of the professional’s equipment must thercfore in-
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clude a code of excuses which will remove the onus of failure,
Some very ingenious alibis were fabricated, and somctimes they
were built into the theorctical superstructure. Doubletalk, am-
biguous advice, and mysticism have been found to be very
uscful for this purpose, but the most ingenious wiy out was to
insist that misfortunes were temporary or even desirable and
that “‘prosperity was just around the corner” and only requirg,
some additional ritnals—the completion of a five-year pla{‘
or perhaps the final misfortune of death which would (,Lken the
gates to a really superior reward and happincss.

Although such excuses generally placated the p:)puh(e‘ and
especially the “educated men,” there were men, J.\‘hb had enowii
common sense nol Lo be [ooled by these expises. They judged
the Decision-Makers by the results, and{bhe results did not
please them. They became skeptics. MLN skepticism was not a
solution to the problem, however; 1t.xnxas still necessary to ind &
successlul scheme {or making degisions.

www . dbraylibrary org.in

Reason N

Spoken language facilitated the communication of cxperience
from individual to individual. Written language was ¢ven morxe
efficient in makmOXkcesmble the experience of men ol other
times and even of DLher civilizations.

But languag’e Had other uses, and it was not long before man
was plavm&'}ld\s with it. It was developed into a lethal weapon
to vxllf}@nd conlound cnemies. It was forged into a powerful
yokeatp*control groups of men, It was even useful for amusc-
mem ‘and the construction of riddles and paradoxes became the

Ssport of nimble minds.

In ancient Greece a new class of specialists arose, the Sophists,
and words wcre their stock in trade. The Sophists became adept
at manipulating words, at argument, and at persuasion. They
fashioned verbal smares and caught such a large crop of fools
that Sophism became a synomym for trickery. But they also
learned somc of the idiosyncrasies of language and evolved
a set ol rules for playing verhal games,
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Their set of rules, systematized by Aristotle, was logic. The
proper employment of these rules was called reasoning. The
sport became a sericus game and finally a cult which is still
alive. Indeed, many pcople today feel that Reason is the highest
accomplishment and main distinction of the huinan animal.

In evaluating the importance of Reason as a mechanism for
making decisions, it is necessary to distinguish at the outset bl‘i
tween the process of arriving at a choice of action and the
process of convincing others that this is indeed the apprphriate
action to take. Although the latter process is essential f\c:ﬁ* situa-
tions that require cooperative or joint action, thegprimary in-
terest of this book is in the first process. \:

As a method of persuasion Reason is, evelfoday, the most
important procedure. As a mechanism fq‘arriving at a de-
cizion, however, Reason is subject to several weaknesses which
will be discussed in more detail in Cliapier 3.

Nonetheless, Reason and Logig ¥epresent a substantial ad-
vence beyond the I)(ailwtﬂgo;"‘}'fjﬁgtl'l J‘}Oi}]ts of view regard the
phenomena or events of ihe" veal Yivotld as the products of
causes, but whereas the carlier theory considered the causes to
be devils, the propon’en’{s of Reason felt the causes were ma-
terial or natural. ¢ \

Another contgthution of Reason was the concept of con-
sistency. Theydsicrtion of two statements which contradicted
cach other ypas’prohibited by the rules of the verbal game. The
proudest @diiievernent of Reason was the creation of Euclidean
geometty which served as a model for clear, precise thinking
for 13»(') thousand years. The principles of deductive logic, the
Files for going from one set of statements (axioms) to another
s&t of statements (theorems) in a consisient manner, are an im-
portant part of Statistical Decision.

Unlfortunately, the proponents of Reason conlused consisi-
ency with truth. Troth involves the real world; a theorem of
geometry is true if it is a perfect description ol the state of
affairs in the real world. Consistency is a logical question that
does not involve the real world. This distinction was not
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realized until the discovery of several consisten! geometrics
which led to theorems contradicting those ol Euchidean ge-
omctry. For example, in one of the newer geometrics the sum
of the angles in a triangle is less than 180 degrees. Modern
physicists are still arguing the question of which of these several
ceomctrics is frue (i.e., describes the world m which we live).

The fact that Reason is divorced from the real world was ot
realized until comparatively recently (and many people today
are not awarc of this gap). A necessary ingredient lor gwdgess-
ful decision was missing, and the record shows it. No ot could
build dams or design boats using the physics of &ristotlc; 1o
one could predict the weather from the m{-:tti(q{ilogy of Avis-
totle. In terms of actual results, the sclence ghilie Greeks which
was based on Reason was on a par with thegseicnce based on the
Devil theory. \

The concepts of Reason failed td diffuse. The mass ol the
population retained the older de,\j'il’ theorics. Only a small cule
kept the idea of Rc%%la]jipaqm” .;,g,l":&;é‘m'oved to be poor cus-
todians. The original ideassiycre not advanced: instead much
nonsense was allowed to ;}ihife them. At last the basic ideas were
virtually lost, and abp@g\all that remained was the tradition.

For over a thousand years devil theories held undispured
sway. Then a sewies of discoveries, inventions, and explorations
made these amngient ideas topple. The circumnavigation of the
world, for example, was an unanswerable challenge to the idea
that t}}re\ig\‘éi‘tl'l was flat, An action had accomplished what
rcasg@eﬁ arguments had failed to do. As men learned Lo doubt
again,” the beautiful theoretical structures of devil theorics
\”g,umpled into nothingness and recently rediscovered idcas of

cason were cnthusiastically scized upon in order to fill the
resulting void.

The first wild enthusiasm for Reason subsided only slowly;
the American Constitution is a stirring hymn to Reason. The
most violent reaction to Reason has come in this century and
old devil theories {in modern costumes) have pressed lorward.

‘The same era that witnessed the rediscovery of Reason also
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saw the birtl of the successor to Reason—Science. The new
techniques introduced by the scientists closed the gap between
Reason and the real world by means of an inductive logic, a
procedure for going from observations to statements. The new
techniques of experimentation, measurement, and a symbolic
language very quickly demonstrated their power in a convine-
ing manner-—they produced results. Q.

Some readers may be surprised that 1 list Scicnce as a meg hav
rismt tor making decisions, By Science I am referring here§ notto
subject matter, such as physics or chemistry, bue Iathd‘ to the
principles used in research. Perhaps I should 1heret‘orc use the
phrase Scientific Method instead. Statistical Dec uxm 15 based on
Scientilic Method, so I will not discuss the tcclmiqu(s in detail
at this point. These principles will be d.QﬂIt with at greater
Iength in the body of the book. M

% 3
S

Summary

The deciston pl"()bl,@ﬂl,\,]abﬁ@lﬁ g’kﬁy]bﬁ% issell, for a biological
mechanism for decision was a necesszn for survival. The human
animal evolved itself owl®f a biclogical mechanism and sub-
stituted a cultural mey:]’m}iism. This cultural process was so suc-
cesslul that human’eivilizations developed, but these civiliza-
tions led to df-:c.jsican problems which were too complex for
the cultural preehanism. The civilizations therefore produced
classes ol sp{*:(}i‘allsts whose business was making decisions. Tliesc
sp(aa]l\Q\dL\*lbcd intellectual mechanisms for decision. The
first mc(h?msm was the Devil theory, the next was Reason, and
the Mtest is Science. Stalistical Decision is an intellectual mech-
Swkm based on the Scientific Method.



CHAPTER 2

NATURE OF DECISION

)

The Problem \ O

Statistical Decision is intimatcly associated w 1th“§(1cnre The
knowledge and mecthods of various S(,l{,l‘ltlfl(\\ﬁﬁlds such  as
physics, chemistry, and biology often providéhe data on which
the decision is to be based. Su(nrlﬁe\\oqmpment such as
punched-card machines and electronu\compuﬁ.rs, is occasion-
ally used in the actual process of Stﬁustu‘al Decision. But those
are superficial connections; the ’reldtlons}np goes much deeper
than this. AR dbrauhbrary org.in

Science and Statistical Hdision “speak the same language,”
both in a literal and figiative sense. The carly work in statistics
borrowed heavily fzdm " the symbolic language (and cven the
shop talk) of X‘II‘I\}S fields of science, especially physics. This
debt is being r’ep’ald with interest, for current theories in physics
use a good déa\l of the specialized symbolic language developed
by statiseidans. The association, however, goes beyond the
techm@ notation of the symbolic language. Science and Sta-
tlstm] Decision share a common outlook, a way of looking at

m;hé curions and complex phenomena which comprise the real
Noborld.

Statistical Decision attempts to deal with the problem of
action in the real world, but there are many ways of looking
at the real world. In order to attack the problem-—in order even
to staie the problem—it is necessary to make some assumptions
about the real world. The attitude toward the real world taken
by Statistical Decision is the one accepted by modern Science.
It is perfectly possible to devise a theory of decision based on a

18
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different attitude—say one of the devil theories—hut the reader
must consult some other book if this is what he wants!

Decision requires the selection of a course of action. This may
be stated a little more precisely as follows:

{I) There are two or more alternative courscs of action pos-
sible {which may be symbolized by 4,, A,, . . . etc.}.
Only one of these lines of action can be taken. A\

This last scntence is a restriction which does not limitiythe
practical problem in any way. Any combination of acigohs can
be considered as a single action. Consequently any 11;:. ‘of actions
can be restated so as to make the restriction app“}y Tt is con-
venient to agree at the outset to work with lists 1\\i‘11ch meet this
Testriction so as to avoid some ambiguities, Such a list is often
called a list of mutually exclusive actionsy”

o\ Y
(2) The process of decision will select from these alternative
actions, a single course of af,tmn which will actually be

ricd out.
car www.dbra ujlbrar_y org.in

This innocent statement wWill, I think, be readily accepted by
nearly all readers. But 1t ao tually involves a controversial point
that has been argued fox *hundreds of years: Can man actually
choose his actions? N‘hls is the old question of free will versus
predestmauon.),,lp the climate of this century the statement
seems quite Teagohable,

Perhaps,.t tl\c hest way to determine additional spccifications
for the blr,m of decision is to consider a simplc example. Sup-
posc th,at I am sitting in my easy chair at six o’clock tonight and
that\I am trying to make up my mind as to what method of
\(:mspcn tation 1 will use to get to the office tomorrow. Pre-
liminary considerations of practicality have reduced my choice
to on¢ of two possible lines of action:

A;: Drive my car.
A, Take the bus.

There is a very simple way to make the decision: Flip a coin.
What is the objection to this process? The question is not very
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easy to answer. Broadly speaking, the objection is that there is
no assurance that a decision made in this way will be satis-
factory. But such an objection requires that a satisfactory de-
cision be carcfully specified. Evidently the degrec to which a
decision is satisfactory depends on what happens when the fue
of action selected by the decision process is actually carried out.
If this outcome or result of the decision process is agrecable to
me, then the decision may be adjudged satisfactory. .

Such an attitude in turn requires that T specifly just whiwput-
comes will or will not be agreeable to me. In othier wofd\s_. when
I am trying to make up my mind whether to driv€ oy tke the
bus various purposes actuate my decision. 1 cthsié' a line of ac-
tion which I believe (ot hopey will fulill thesepurposes.

(8) The selection of a coursc of acti@ih}ls to be made so as
to accomplish some designar.cd‘pﬁﬁ*pose.

Generally speaking the purposd will be to choose an action
which will lead to a d@sirrahl@giwa{gw}gxhthe real world in the
future, Without this conditfon the decision problem would b
trivial. There are all sopfS\of mechanisms which could be used
for making a pur Q&{éiléss choice. For example, the possible
courses of action.cduld be numbercd and the choice made by
drawing a nun}.b@:;r' from a hat.

Even a siraple’ problem like the car vs. bus example may 11-
volve a mkri]})”er of diffcrent (and sometimes conflicting) pur-
posesi\IQilaj/ be primarily concerned with saving moncy,'or per-
hapsdlte saving of time is more important. To make the matter
casler, let me specify that my purpose Is to enjoy a specific situa-

\tion in the real world tomorrow night at six o’clock, ta be
sitting comfortably in my easy chair at that time.

Note that time is an ingredient in the decision problem. First
of all there is the present time, tonight at six o'clock, the ume
at which my decision is to be made. Let me denote the situation
that exists in the real world by the symbol X so that T will not

hav.e to keep repeating the phrase “the situation at the time of
decision.”
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Then there is the time of reckoning, six o'clock tomorrow
night. Whetlier or not the decision was satistactory will depend
onn what situation exists in the real world at this [uture time
{which I will denote by ¥} . Therefore the decision itsell must
be regarded as part of a larger process which takes place over
a period of time. In this process the decision leads to action
which in turn leads to some outcome. This process can he repres,
sented by the little diagram given below:

N

O\
Present [X) Future (Y} N\
Fig. 2.61 Q\‘

Thus if T drive my car I will set into morq\m a chain ol events
which will lead to some outcome tO]ll(}I]\t\ 1119,111 On the other
hand. if I decide to take the bus I willaetuate a different chain
of events which may lead to a d1fEchnt outcome. To make my
decision I must antici ate ijhe ngLli'(S/ gi)(:‘CISIOIl is predictive.

Prcsumably the outcome dpends’on “§lich action T take {ot
otherwise the decision dogs n()t rcally matter) . For the decision

to bc consequential, thstefm e, 1 must consider that different
actions will lead to c((ﬁerent outcoimes. This can be expressed
symbolically by means of the notation Y | 4,. (Read: The out-
come if actiomdgas taken.)

To 111ake‘;$iy ‘decision T must {race down the consequences of
cach of wlle)dlternative lines of uction, T must consider alterna-
tive [u{\e‘ This involves imagination (foresight) because in
Ie"ill\l_} 0111\, one course of action will be taken and only one
ottcome will occur. The alternative futures can be represented
}mg; ammatically by:

Fresent Action Future

_7/1_‘4_:. ’E

Fig. 2.02
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The diagram for the car vs. bus problem might look iike:

Tonight {6 P.M.) Action Tomorrow Night (6 P.A)
Drive car > Sittinghir]
easy chair
Sitting in ,’/
easy chair :
Toke b | Walking home |
ake bus from bus stap { N
Fig. 2.08 Oy

£ ’\

If, as I have stated, my purposc is to be sitting, romlornb]
in my easy chair at 6 P.i. tomorrow night, tl’fen the ‘mee
diagram permits me to make my decision. h&-],d‘c}ﬂtly I will only
be able to accomplish my purpose if T drive; My car.

In order to construct Tigure 2.03 1 ;}ﬁ&\t have some way of
knowing what will be the ouicomes fordach of the actions. The
outcomes that [ have written down {yere obtained from past ox-
perience. Thus I must consideriot only the present and the
future but also the sy df’ﬁaé‘%ﬁ' ¥ofributes the information

or data upon which the detision can be based.

N

Past i"’,\ Present Future
X Nt
Daté, > Decision Outcome
P\ Fig. 2.04

The xb\e:ésq of decision as [ have presented it for the car vs.
bus ProE em is greatly oversimplified, yet it contains the three

ha&(c. steps toward decision:
N

N (I) The outcomes for each action are predicted.

{2} The outcomes arc cvaluated in terms ol some scale of
desirability.

(3) A criterion for decision, based on the purposcs, is then
used to make the actual selection.

The prediction in step (1) was based on my past expericnce
with cars and busses. The evaluation in step (2) was based on
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whether or not the outcome accomplished my stated purpose.
The comparison in step (3) was based on the criterion: Select
the linc of action which accomplishes the stated purpose.

These three steps are given a more precise formulation in
the process of Statistical Decision. They are translated [rom
rhis tather vague verbal language into the precise symbolic
language. The translation will be described later. »

This detailed analysis is, of course, unnecessary [or the oyels
simplified car vs. bus problem of Figure 2.03. However \ahy
decision problem in the real world, including the examlbi\(e, has
a much more complex structure than Figure 2.03. Fp{"é'e;ample,
T have listed a single outcome for each action bug'to do this is
unrealistic. If I drive my car, T might be sittiig) home in my
casy chalr at 6 p.m. tomorrow, but I also r;light be sitting in a
hospital bed with my leg in a plaster cas <While it is true that
there will be only one actual outcomedf1 drive, at the time of
decision T can conceive of a large r}y;rhljer of possible outcomes
that might happen. l\-&gw_)‘{ﬁgéu}g}g%eOsi_tg%gd a very restricted
purpose. | might specfy a )1'0jz§tier purpose: I want to have a
general feeling of well-being at 6 rv.M. tomerrow night.

In the latter case I miglit be in a much happier frame ol mind
if I were walking ho c&fintgling in my pocket the extra cash that
i had saved on the*hus than if T were sitting in my easy chair
figuring out heymuch it would cost me to fix the dent that
sommeone Imdg}imt put in my fender. Thus my purposes might
conflict. (‘Ur:l%%_’quemly an outcome might have both desirable
and und@Sitable aspects. A measurc of the desirability of the
Ollt(fg".lq;l(‘.;i-\-'()Llld try to weigh the pleasant against the unpleasant.

Tinally, when the problem is given a more realistic staterment
he” criterion for decision is not easy to state. The rule for
striking a balance, for comparing the actions, must he able to
deal with many outcomes and cross-purposes.

Alternative Futures

The simple structure ol Figure 2.02 is an inadequate picture
for most decision problems. Instead of a single cutcome as-
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sociated with each action one can conceive ol a nuwinber of pos-
sibilitics (as in Figure 2.0).

Action Cutcome {6 P.M. tomorrow}

Sithing in easy chair ‘

Drive car ?

Sitting in haospital bed ‘

Q!

/L\

..
¥ig. 2.06 .‘:\

The notion of alternative futures 15 a use[;gi’t"’tmcc’pt-rm.l de-
vice but only that. There is just one fururé in the real world
and much as we might like to turn back sheelock to some carlicr
time and try a different line of a(rlon,qt\hm possibility is denied
to us. The closest that we can comexgo doing this is when situa-
tions rccur that resemble someNpast situation., We can then
profit by past mistakes to chedse a more appropriate course of
action. It is ﬂmwxa:m@atg}m -vesignts that have suggested the
concept of alternative [utul C8,

Instcad of the symljol I the symbols ¥, Y, . . . etoo may he
used to represent(§ specific outcomes. Thus ¥, might stand for
sitting in an ea$yschair tomorrow night at six and ¥, , A, for
the occurrenéerof this outcome if action one, driving the car,
s taken. ?ic' concept of alternative [utures leads to a structure
such as\}‘\gulc 2.06,

A\{Q“Om: of the possible routes in Figure 2,06 (such as the one
inidicated by the heavy arrow) may represent the actual course

S '\E)f events. Such a route is like a chain with a number ol diflerent

\, ) links. It is appropriate to call such a sequence of events an event

chain. The concept of an event chain is very uscful in many
applications.

Such chains are familiar in everyday experience. The simplest
cvent chain would be once {like Figure 2.02) which did not keep
branching off. Each cvent would lead to a single event and so on
down the line. Such a chain is often called a strict causal chain.
When I push the starting butlon in my car, for example, a
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series of cvents happen which follow a definite sequenee that
terminates in the purring of the motor. I might say that pushing
the button “caused” the current to flow through the starting
motor and this current “caused” the motor to rotate and so on.
This is the origin of the name causal chain.

Present Action Future

Fig. 206

www_db;‘ﬁg%ibl'ar‘y.org_in

This terminology is linels%o long as I usc the phrasc “A
catses B” as an abbrewi@bion for the phrase “when cvent A
occurs then ¢vent B.i{(-'i\ll follow.” Trouble starts when more
than this is read I]_’}N\) the word “cause.” Because of the meta-
physical connotdtibns, many scientists steer clear of the word
“cause” even(though it is a convenient abbreviation.

Some Q»‘Q’i:\yaa}' decisions involve sequences of events that are
a.lmos't\'s\\t%ic'.t causal chains. Thus if | act as though the motor
will aliays start when I push the button, it will probably do me
no “harm. In such cases the predictive part of the decision

\pfoblcm is easy, and the structure of the process is adequately
represented by Figure 2.02. In most cases of practical decision
the problem is not so simple, and the branching process ol Fig-
ure 2.06 is more realistic.

In the strict causal chain the prediction is “certain,” but
when aliernative futures are admitted it is no longer “certain”
which outcome will occur. This condition of uncertainty makes
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many people quite uncomfortable. They sometimes argue that
there can be no guide to action 1f the sHUAtion Is wneertii.
This argument is absurd because all actions in the real workd
are shrouded in uncertainty. The question is mercly onc ol
lemrning to live with uncertainty. Statisrical Deeision is designed
to accomplish this purpose.

For reasons which will be explained later. chains ol cvenis
suclt as those in Figure 2.06 arc called probability cecnt chugs
One of the requirements for an understanding of ULWLW{ il
Decision is 1o learn (o think in terms of probubility cvad i
instead ol the simpler and more familiar strict causad Mains.

These concepts belong o the part ol Statisticak, i)ecwun rthat
I will call the Prediction Sysiem. ‘..,'\‘

Conllicting Values \ )

In addition to alternative {utures a\xe'llutu: formulation of
the structure of decision includeg” the notion of conflicling

values. This difhculry ar d}eq 3l L%gilhe gmpow of the decision 1s

stated broadly, A broad statemerlt ma¥y mean that a given oul-
come will have both desiralie and lllldESl]dl)lC aspects and an
evrduation of the desitakility of the outcome must take thesc
(,(Jnﬁl(tmo values 111&0 aceount.,

The preblem nF\neasuun;D desirability has becen sadly neg-
lected by sc 1enu At s, admittedly, a nasty topic Lo tackle, but
it is a job thad weill have to be done. The main work so far has
centered afolind monetary values, the measurement of dosir-
ahlht}yu_ forms of dollars and cenis.

Litvilie choice of car vs. bus, a number of cash values canter
»isl;it(\j the picture. The costs of cach mcthod of transportation
Aust be considered. Moreover, some of the outcomes may in-
volve additional costs (such as hospital costs) .

The actual dollar and cents outlay does not, however, cover
all of the values in the problan. There is the saving of time
to be considered. Now desirability measured in minutes canpot
be compared easily with desirability measured in dollms. Tt
may be possible to convert time to a monetary scale. For ex-
ample, I may value my time at so-and-so much per hour.
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Otber values such as convenicnce or peace of mind may not
be casily converted to a monetary scale, One way to make the
conversion would be by an inwospectlve questioning: Would 1
prefer to stand up on the bus all the way home or to pay out a
dime, a quarter, a half dollar, cte.t In this way I can try to
establish the cash valae of the inconvenience of standing up in
a crowded bus.

When the values are converted 1o a dollar and cents scale @
other common scale) the condlicr of values can e resolved Dy
a Tittle bookkeeping. The costs associated with a given gdtome
are subtracted from the gains and the result ds the doMar and

L 3

cetits vaiue ol the outcome, P\

Many of the prolitems where Statistical D(:n:isir.}fx?ms been used
have en'ipio*__\_'cd tliis monctary scale for valuds, Maowever, it does
not follovwe that sach a moenewry saalels (;q@f)letcly satisfactory,
but rather that the development of altpaﬁuﬁ.ivc cales has lagged.
This part of the decision problemi will be called the Falue
Systean. ',f'"..

When an action WY EiRradibRyy egibme. the desirability
ol the outcome may also bagesarded as the desirability of the
action. VWhen several o flomes are associated with an action,
however, this trangfedol desirability is not so casy. (ne way
1o meet the pl'{)hjf_‘.l is 1o determine a sort of averdge desir-
abiliry ol the amesmes associated with a aiven action. The re-
sult nay l}1c,Q:l?c regarded ay the desirability ol the action.

Then drdrule or eriferton may be sctup: Choose the action
with Lb’t\\iﬁghest Aesirability. This tule leads o the selection of
011.(;\.1161.11'36 of action to follow. The compavative part of the
desision problem will be called the Decision Griterion.

N\ “Thus the process of decision may be vegarded as a machine
for making decisions. Such a machine may be called a Decision-
Maker.

Components

When an cngineer wants to design a complicated piece ol
equipment he often begins by making a block diagram. In a
radio, for example, radio waves are comverted into sound waves
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by a rather complicated process. This process can be broken
down into smaller steps as indicated in Figure 2.07.

Block Diagram: Radio

Converter:
Selector = Amplitier == Radio to

Radio waves [ Sound waoves

sound waves

U P -

s W

The radio engineer would attach more technicalMabels o Liis
boxes, but the block diagram would look \-’({r\’{:}nuch like the
one I have pictured. Q

The use of a block diagram has two adyantages. First, it pro-
vides a clear picture of the process as a shble. Second, it cnables
the engincer to concentrate on the! design of one component at
a time. The discussion in thiy L;.h:ipft:r cilables us to construct
a similar block diagw\}!l&g;ﬁﬂggzgﬁj%p&}laker.

Feeding into the DecisionsMaker will he data. This informa-
tron is used in two Wayse In'the first place it goes intoe the Pre-
dicting System, From{iﬁc Predicting System we obtain a list of
possible outcomesifor’ cach action and also a probability as-
sociated with eath outcome. The information also feeds into
the Value S)w{”f:?ﬁ. which in turn provides a second quantity
associated spith each outcome, the desirability.

At thi§ point we have

O\

({}\ A list of actions.

2\ 12) A list of outcomes lor each action.

N/ (8) A probability associated with each outcome.
(1) A desirability associated with each outcome.

We then apply a Decision Criterion and obtain, with the aid
ol this criterion, a recommended course of action.

Thus at one end we feed data into the Decision-Maker and
at the other end a rccommended course of action comes out (as
shown in tigure 2.08) .
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Black Diagram: Decision-Maker

| Predicting
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The Pragmatic Principle O

At this point I want to discuss very briefly \\-'ll@%."fnight be
called the philosophical foundations of the problér/of decision
as T have outlined it. This outline presupposssasway of looking
at the real world, an outlook which, while"in accord with
modern science, is not entirely in accotd‘\;&itl'l the attitude that
prevails outside the laboratories. ANV

First T want to state what I consifer to be the basic tenel not
only of science but ofwcomdhedulsifng JFRese are many ways of
putting it, perhaps the simpljébi'being the proverb: The proof
of the pudding is in the gating. In other words, to my way of
thinking, the court of fimal appeal is not brilliant verbal argu-
ment, high-soundingabstract principles, or even precise logic
or mathematics—42is the results in the real world. Not all
cases have to Beldarried all the way to the final court, but n
event of d@sg@*&emeut, the real world has the last word.

Therclore in judging any system—Devil theory, Reason,
or Scit:'}ﬁce—ur.hc test is: Docs it work? John Dewey has put it
thi{Way: *“The true purposc of knowledge resides in the conse-
‘q\u\cflces of directed action.” ' Statistical Decision is this prag-
matic attitude phrased in the language of science.

The pragmatic principle cannot really be justified since it
amounts to a standard for justiﬁctation. There is, however, one
argument that I wish to present becausc it is gencrally over-
locked. The pragmatic principle, and (so far as 1 know) only

1Dewey, John, The Quest for Certginty, G. P. Futham’s 3ons, New York, 1939,
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this principle, can provide all of us with a protection iinst
specialists. "This protectton is despevately necded becanse as
our ¢ivilization becomes more and more complex, 300y nereas
ingly necessary 1o seek the advice ol specialists o make decisions
that will affect large numbers of people. You and T cannot
comprchend the technical aspects of these specialtios. bl we
can tcll whether or not the consequences ol the r.[u'i.smm\:_n‘c
to our liking. .

'To accept any other standard—in particular, 1o :r('«'n*pt ah-
stract standards which can only be inter preted by t]n specialists
—18 to strrender to domination by specialists. lhlwlmmn 11011
has been disastrous in the past and is just as dm'm ous today.

If we insist that the claims ol the spernllsth)c judsed by the
pragmatic principle, we can, without asechnical knowledge
of the ficld of advice, select omr adviseterand ther eby provide a
guard against unscrupulous c}nrletam who exploit the prin-
ciple that what the people cannot Whderstand, they must accept
on faith, 1t also plow1dggr%&?é;§tép§1”§wdmst the even more
dangerous “honest ﬁmatu,s, ‘individuals who insist that they
are right because they have a special access (o truth.

I like the pﬂrrmau(\prmmp]e because it seems to me that it
is compatible wit (hé values of democracy and individualism.
It stands as a bul\\ark against tyranny, intellectual and other-
wise, "\ 3

Some cai@ must be taken, however, in the interpretation of
this fi st"}armmple The real world relerred to is the world of
scnsation, the world of sight, sound, smell, taste, and toucl that
prmrdes us with experience. This is the real waorld of modern

”‘suence

A The principle presupposes that the individual has a value
scale, that he can distinguish sensations as agrceable or un-
pleasant. Moreover, the individual has memiory and can com-
pare time segments of cxpellemc It is such a time segment of
experience that T have called a “situation in the rcal world.”

The pragmatic principle requires the individual to (,ompflre

one group of situations witl another group.
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If the cxpericnce of the individual 1s insuflicient, he can
draw upon the expericnce of others in order to assess the per-
formance of an intellectual or theoretical system. The use of
the principle assumes that what has heen successful in the
past will continue to be successful in the future, This assump-
tion. while in mo sensc a guarantee, can be justified by the
pragmatic principle.

These remarks emphasize that values are intrinsic in di¢
pragmatic principle. 'The “cating of the pudding” is a_galnc
appraisal and there is no way ol dodging aliogether the\jm'c:k’lish
problem of values. It is true that many eminent philosophers,
such as Bertrand Russell, have denied that Scléfe “has any-
thing to do with values, "This apparent ct)nu::-?{}iztion resuls,
I fecl, from ambiguities in the word “values™ Lhere ave spe-
cialized wvalue sysiems that arc widely, Gsed in Scicnce {see
Chapter 5), but some philosophers‘J’.{'{}uld quarrel with my
use of the word “value!” in this tzonfu;r'(."ticm.

An iminediate consgguienge o Lalie pragmatic principle is that

w.dbrayhibrary.org.in
we must abandon absolufes, \Nus ?\} Ahitent can 1o longer
be regarded as strictly trueor falsc; a situation is not stmply
wood or bad. and an {:g.;,_:{ion is not absolutely right or wrong.
Tnstead e must thinken a relative scalc.

There 1s no 1‘e:;1~{1§s when we go from ahsolutes to a relative
scale, for the alisglites persist as endpoints of the scale, In fact,
we gain begatse our thinking is [reed from a verbal straight
jacket. *-\-"“c:\ib not even need to forsake the use of such handy
words @\ rrue” or good’-—we need only to understand that
the .\ﬁcﬁ‘ds are used relatively, or in orher words that the phrase
“Tor’ practical purposes” is automatically added whenever the
words are used.

For example, the theorctical system called Euclidean ge-
ometry (high school geometry) 1s widely used in construction,
surveying, and astronomy. As 4 system, Euclidean geometry
passes the pragmatic test with lying colors, the conscquences
of its usc having heen generally lavorable. We can thercfore say
that Fuclidean geometry is truc—but this truth is not absolute,
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In fact therc are some astronomical situations where the usc of
Fuclidean geometry docs not lead to adequate pr edictions,

This same relativity also applies to good and bad or right
and wrong. If a woman falls dewn 1n the street and the only
two actions open arc kicking her or letting her alone, then
the latter may be the right action. On the other hand, it addi-
tional actions (such as assisting her} are possible, then letumg
her alone might be wrong.

The use of absolutes is similar to the usc of a thern\mmctg
with only two intervals on the scale. We would not*get very
far in discussing temperature il the only two repoft:; that could
be made were hot or cold. In order to deal wmq‘the phenorme-
non in a scicntific manner it is necessary tO3et up a graduated
scale (as physics does). This is often har@ to do (it took cen-
turics to evolve our present tcmper'ltm‘e scales) , but it must
be done. Statistical Decision involvésyWwo such graduated scales,

a value scale and a scale for measuring uncertainty (proba-
bility) . www.dbraulrary org.in

L Q
SN g

Summary Py

A Decision- Makew;s‘\conmdt_rt,d to be a machine, Into the
machine flows mﬁoﬁnatmn out of the machine comes a recom-
mended coutseofaction, The mechanism consists of three hasic
components. :'The Prediction System deals with alternative
futures, Fble"Value System handles the various conflicting pur-
poses./Lhe Criterion integrates the other two components and
sclegts ‘an approprnte action. It is emphasized that the prag-

adatic principle is hasic for the construction and comparison
f Decision-Makers.



CHAPTER 3

PREDICTION

N >
A\
Prediction Techniques i}

The component of the Decision-Maker that has ~1ed to the
name Statistical Decision is the part T have call@d\the Predic-
tion System. This component has recerved thedwmost attention
and we know a good deal more about hm\\w sct up the Pre-
diction System than we do about the othu\parl,s of the Decision-
Maker. 2\

One veason for this somewhat lafy 51(1( d developinent is that
few topics have terrlpneduathbiauhlhimmoﬂgmankmd more than
the question: How can man f’oresee the future? Tor thousands
of years man has scarched bE§) the answer—the secret that would
cndow its possessor \\llgh‘}l(llf‘s fame, and possibly happiness.
Many scers have mﬁxb forth with the proclamation that the
secrct was theirs, t.trr;,t their eyes could see beyond today and into
LOMOTTOWY. Some\lfave gencrously offered to share their secret,
for a small igg, with their fellow men. These claims have never
stood upA \hen judged by the pragmatic principle.

Yel man lras never abandoned his efforts to read the future—
toqm\lch depends on it. Fle has, however, become more modest
ﬁ\lm demands. Since he cannot peek into the {uture, he will
settle for shrewd guesses. The more modest question: Flow
can man predict the future? has at least a partial answer. The
answer: By studying rhe past.

Fven in the mysterious and erratic world in which we live,
there are some threads of continuity. There is chaos and con-
fusion all about, but also some system and stability, Our prog-

33
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ress in the real world is like driving aleng a road ihat 1s
shrouded in a heavy fog; there are no sharp, clear details, but
only vague outlines. By looking very hard through the swirling,
random fog shadows we can distinguish c¢nough of the more
permanent road shadows to enable us to go ahead successiully
il we go slowly and use caution.

Similarly, the first step toward prediction is the scarch, J\or
stable characteristics—those characteristics which persist \over
a period of time. In fact the simplest procedure for pmd\.mn
is a method often called Persistence Prediclion. « \

Persistence Prediction means nothing more, han the pre-
diction that there will be no change. If one &mhes to predict
the weather tomorrow by this method, gre/simply deserities
the weather today. Somectimes tlhis d(\lce‘Q\mLLS out surprisingly
well. SV

In weather [orecasting, for cxa,nfpl’e, Persistence Predictinn
is hard to beat. The modcm mgeorologist uses the dara from
hundreds of wcath‘ew»smhlu@uﬁs}ammm&ng]ml with a comphmnd
air-mass thcory, in order .to»arn\e at weather forccasts. Dui in
one hundred predictigas\he scientific weatherman will {on the
average) be right ind ohlv about ten more cases than a weathet-
man who used I’e}stﬁtcnce Prediction. This is not because mod-
ern methods asebad, but because persistence methods are good
(they give the ¢orrect prediction about three quarters of the time
so that Lhm ¢ is not too much room for improvement) .

A fz\\nmho wsed Persistence Prediction would do just as well
as, th,e sports experts in predicting the outcome of the National

Mand American League pennant races. This is especially true n
the Amcrican T.cague over the last [ew ycars! Some sports
writers scem to have noticed this fact and follow the policy of
sticking witli the champion.

The method has its limitations, of course. It only works in
relatively stable or slowly changing situations. It is often of
little practical value because, as in the stock market, the money
is to be made by predicting changes. Nevertlieless, Persistence
Prediction is the basis of a number ol successful predicting
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svstems including those nsed by imsurance companies, Insurance
life tables rely on the fact that death rates, while pot actually
constant. change rather slowly.

A sccond scheme for forecasting is Trajectory Prediclion.
This scherte assumes that, although there is change, the extentof
change is stable. Il noon temperatures were recorded on succes-
sive days as 75, 76, and 77 degrees then the Irajectory Predic-
tion lor the next day would be 78 degrees. Tn making Uhis prcs
diction we have assumed that the rise ol one degree per day(tuill
continue, This method may give fairly good prediciioys for
the next time-interval, but it can also lead to 1‘idi(:|,11@1?5 tong-
range [orecasts. 1f we used the assumption of a c_m&-?degﬂfc rise
per day to predict the temperature a year aht‘.‘f}d\, we would

N\

obviously he In hot water. \

Trajectory methods are used in artill,(.xﬁ\\ﬁre control, some
weather forecasting, short-range stockgmarket prediction. and
in estimating the size of human ]Jol'gufjét.ions. The word “trend”
is often uscd instead c.;&gaj&cto&g:.’f" )

Cyclic Prediction is hascc 1(@)_{111?{-1% Wtifdble that history re-
peats trsell. The method ha™sorne notable early successes: the
first cffective longrange{prtdictions made by man cmployed
this device to f(n‘etel\c\\(‘_l.i’pscs and other astronomical cvents.

In Cyclic Predigsion, it is assumed that cycles or patterns of
cvents are sl;:-l.hl‘a\j’.f["hc method has been used in predicting the
return of coiiets, the occurrence of sunspots, 1nsect plagues,
high and|J@ty agricultural yicld. weather, stock prices, and cven
(by Spe@ler) the course ol our civilization.

Tl{é,’éarly successes of Cyclic Prediction stirred great hopes
ifi"the breast of man that here, at last, was the long sought-for
&L‘ret ol prophesy. Even today some investigators, notably in
the stock market, are still striving—but without much luck—io
realize this ancient promise. Astrology, a perversion of the
methed, still survives on the strength of this old pr(rstige.

In going from Persistence Predicrion to Cyclic Prediction,
there js a utilization of more and more data. The former necds
only the most recent occurrence of the event, while in the latter
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the available histovical information is used—in fact, the sisnd-
ard alibi for the lailure of Cyclic Prediction is that the vecord
docs not go back [ar encugh.

Assocative Prediction differs [rom the foregoing in that it
uses the data from onc type of event to predict a second type.
Conditioned response is an example of Associative Predictinn,
Pavlov made dogs salivate by ringing a bell, To acconpiizh
this, he rang a bell just before feeding and repeated the ‘pnt-
tern over a period ol time. The association of the two @ity :at
types of events, ringing of the bell and feeding, is veky similar
to a causal event chain. In both cascs the stable elémcnt thar is
the basis of prediction is the stability of a re!g{f@:ﬁxhig) betwaen
two events, O

In politics, economics, and everyday ].iﬁQ,:Associativc Predic-
tion is the favorite method. Commodig{markct speculators {eel
that they must stay abreast of national And international everts
in order to judge the movementg;o‘f"ihe market. Even the gen-
eral public is awamdggguﬁy;ig@gitm@'mtions of prices imme-
diatcly after war scares or peage scares.

A relationship between. evénts is often expressed by the word
“cause.” People say thatialarge national debt “causes” inflation,
that ovm*productio&{\:‘céuses” unemployment, that armament
races “cause” wapNn everyday life overeating “causes” indiges-
tion, nasty rer@rks “cause” hard feclings, and extravagance

causes” T

In allof tiese cxamples one type of event, the cause, generally
precedés'the second type of cvent, the effect. From the point of
x’igx-QTOT Pavlov’s dogs the bell “caused” the feeding. As long as
\tiﬁ{:;"xk!or(l “cause” 1s used in this sense, it serves a uselul descrip-
tive purpose.

If we stick to the simple meaning of the word “cause,” our
quest for causcs will not go off on wild goose chases. All that
we really want to do is to identify the bell that comes belore
feeding.

‘This is not always easy to do because Associative Prediction
-greatly enlarges the area that must be searched for clues. If we
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want to predict the price of a stock, we cannat focus our atten-
tion solely on the previous history of the stock; we may have
to examine events of many different kinds, Oar “bell” may be
an cvent that takes place ten thousand miles away—a political
speech by a foreign leader or the report of some new scientific
discovery. Of the many cvents that we might study, only a few
will have any discernible association with the events we wish,
to forecast.

A serious weakness of Associative Prediction is that unlefsd
great deal of care is exercised in the scleetion ol the “he Iy the
whole process may degenerate into nonsense. Forn{m’«rz “tellers
use Associative Prediction, their “bells” being smh cvents as
the fall of cards or the configurations of tea lgdNcs” They have
never demonstrated that the events they us\ Jn exposing the
future are relevant to the events predicted?

Analogre Prediction sets up a (onespondem‘c between two
sets of events. Onc of the sets 1s s1mple ot at lcast familiar, and
consequently predic t@@%%ﬂ}}aulfbﬂﬁ}%dg for this sct of events.
The analogues of these puduﬁc)ns are ﬁun made for the sec-
ond set. n

If modern nations w 1rh\at0m bombs are analogous to small
boys playing with sti kQ of dynamite (as has often been sug-
gested) thren the fagdof the nations can be predicted by analogy
with the [ate of ¢@’bovs.

Analogy is ene’of the most potent ghmmicks in an author’s
arsenal. cs ec?:if’illy if he is dealing with strange or dillicult topics.
Not onlyGill an apt analogy make a reader feel that he under-
stands\'{\aﬁat the author is saying, but it also may convince the
redder’that the author knows what he is talking about. Fow-
evel, verbal analogies have a dangerous tendency to blow up
in the user’s face, especially when they are carried too lar. Be-
cause of the great overuse of analogy, argument by analogy is
no longer in good standing with logicians.

Nevertheless, when properly used, analogy may be a power-
ful tool for prediction. This is especially truc if a mathematical
analogy (or model} can be consiructed. By mathemaltical argu-
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ments, the performance of this model can be predicted, Events
in the rea! world may then be [orecast by analogy.

The use of scaleanodel airplanes in wind tnnels to predict
the perlormance of (ullsized aircraft and the usc ol experi-
nental animals to test drugs destined for human censtumption
are two examples of Analogue Prediction in the [ield ol science.

This list of techniques for prediction 1s not intended 1o, ey
exhaustive, Many special technigues bave been devcloped, to
meet the many different prediction problems that arise.d )

‘There is onc method of prediction that deserves mentioh here
because it (and it alone) is 100 per cent succcss[ukf’ I'his is the
technique of Hindsight Prediction, the prcdic;ié{‘f ol an cvent
after it has alrcady occurred. Radio commehfators, NCWSPaper
colummnists, economic authovitdes, and po!i,i;Q.\iéns use this [-told-
you-so method with excellent results, g\fﬂ"that is pecessary to
apply the method are the ability to fiake ambiguous (or even
contradictory) remarks and a _ta,Lcri’.t for selective amnesia. Ex-
amples of I¥iﬂdsightwly%'&?{ﬁudﬂaﬁ%i%ﬁi{h the writings ol his-

torians and philosophers. 87

Numbers Versus “{@fﬁk

When we are fac&l\witl'1 a specific forecasting problem, we
may have to study he subject intensively in order to see what
prediction tcc\hjﬁqucs are applicable. After making a choice,
we must_thef’decide what inlormation or data will be needed
for Lhe;(@}}ération of this technique. Next this data must be
collected. Sometimes the information may be obtained from
a‘mﬁl?{l.)le records, but often existing records are inadequate for
thé purpose, and it may be necessary to go out and make our
own observations, The prediction technigues can be tested on
this data and perhaps modified in the light of the additional
experience. If we are clever or lucky, we may wind up with fore-
casts that will be sulliciently accurate for our particular pur-
poses. This whole process, from data to forecast, will be called
a Predicting System.

Soomner or later in this process we are bonnd to run into the
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problem of error. Few things are so dishcartening, cmbarrassing,
and (alas) inevitable as a “busted” foreccast. What can be done
about this problem?

The first step that can be taken is to face up to the problem,
to meet it honestly. This means admitting, to others and to
oursclves, that the Predicting System is Jallible. This nicans
abandoning lace-saving alibis and acknowledging that incorrect
predictions are not accidents but are as mucl a part of the Pres ¢
dicting System as the correct predictions themselves, O\

The second step is to abandon all-or-nenc prediction. {{\ any
one of scveral outcomes may occur the possibilities s{h,ﬁz‘pld be
explicitly stated. Whenever possible a list or range ghpuatcomes
should be given. \\

Some device Lor stating the chance of ocfzul‘rtjlcé of cach out-
corne is now necessary. One such doevice 1% ;lim\"uscd on a racing
sheet where the chance of each hovse 1s A¢seribed verbally. Thus
a llorse may be a “lavorite,” a “conteder,” a “longshot,” or

N

) raulibfipry .org.i
A more conventional ver ) serte wolld be to employ such

*

“just out for ithe exercise.”
- Woww d

words as “likely” or “unlikely®and perhaps modify them with
adverbs such as “very.” D iis way the I'redicting Svsiem be-
comes a device for clam{fyﬁng the possible outcomes.

How can we tell hether the scheme is doing a good job of
classification? TLE k]’u(:.%lion can be answered by examining the
record of thtjo\P‘r'edicting Systemn. First, let us consider those
events whidhywere classed as “very likely.” Suppose that this
(':lassiﬁca‘&t'(%“was used in a hundred cases and in ninety ol these
::ases’..gl‘lé cvent actually occurred, This would indicate that the
cldssification “very likely” was justified. On the other hand it
onl¥ ten of the hundred cases actually oceurred, we would not
have much confidence that the scheme was properly classifying
the cvents.

In the samc way the other categories could be examined, and
in this fashion the Predicting System could be evaluated.

The verbal scale, though a step in the right direction, is not
very satisfactory. The word “likely” is not precise; it may mean
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different things to different people. Some might feel that if
events classed as “likely” actually occwrred more than hatl of
the time the classification was all right; others might feel that
an event should happen oftener than this to deserve the clas:h-
cation “likely.”

‘The vagueness of words has been misused by prophcis 50
often that qualilying words such as “likely” are sOMETINICHN
scorned as weasel words. Professional gazers into crystal Laih
soon become adept at putting verbal loopholes into thu\i“me-
dictions: “Podunk has a terrific team and should win gasy Hut
Oshkosh U. might spring a surprise.” ~ON

It has long been recognized that words are mad\equate 10018
for really precise description, that disagrechients over defini-
tions are likcly to arise, and that mampula@cm of words 1s sih-
ject to a variety of pitfalls that are ha,lti fo avoid. I will not
labor the pomt——thc semanticists hay®ymade a profe:,slon oF it

While it is easy to criticize 1a11c*uafre as a tool, it is a much
more difficult rnatter‘%"ﬁﬂf@ék’{‘&rﬁﬁ%s‘ﬁﬁi& means of commuuii-
cation. It took mankind sev eral*thousand years to come up with
a workable replacement. g

The introduction of ﬂms new tool coincides with the birth of
moaodern science, GaNeo transformed physics by substituting
numerical measurementa for verbal descriptions and math.,
matical derlvatlons for verbal arguments. Since then, one feld
of science a{t&r another has made the slow and painful transi-
tion fr om\\wolds to numbers. Some scientists regard this step

as the distinction between scientific and unscientific study. Said
Legd, Kelvin:

When you cannot measure what you are speaking about, when you
canmot express it in numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning ol knowledge, but
you have scarcely in your thoughts advanced to the stage of a
science, whatever the matter may be.

"The third step that we shall take in dealing with the problem
of uncertainty is to go from a verbal scale (such as likely—
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unlikely) to a numerical cne. In raking this step we shall be in
accord with scientific tradition. Morcover, it is a step that olten
leads to important results.

How can a verbal scale be replaced by a numerical one? First
of all, the Prediction System must be modified so that it asso-
ciates a number instead of a word with each outcome. 1t is cus-
tomary to use for this purpose cither a common or a decimal
fraction, i.e., a number befween ZeTo and one. This numberd
is to be regarded as a measure of the chance that a particalar
outcome will actually oceur. O

The Predicting System is still engaged in c]assifyingg.’,tihé out-
comes. but now the classification is a numerical ong/@nce again
we want to know how good a job of classificatinmnis being per-
formed. \ ’

A predicting system which leads to probat’gihties will be called
a Probahbility Prediction System (or PP§'EBr short) . As was indi-
cated in the block diagram (Figure‘?.OB’) of Chapter 2, such a
system 1s an intetc,ﬂ‘al“fg\’a“t,%(}a%f_gg%;: TOCESS of Statistical Deci-
sion. In fact, it is essentially this pért%i:ular component that
distinguishes Statistical chi‘siiin from the other theories of
decision that exist at presént.

Because the conce}'t\{éﬁ probability plays such a key role both
in the theory and practice of Statistical Tecision, I want to pause
at this point and £éil'you a little about the history and nature of
probability. s

~

Histoxyuof Probability

In.x\\;:ié realized cven in the carlier civilizations that uncer-
@inty, chance, or a degree of chaos is a characteristic feature of
the real world, or at least of human knowledge about the real
world. Not only did humans learn to survive in an uncertain
world but, curiously enough, they found it entertaining to in-
troduce deliberately additional uncertainty in the form of gam-
bling games.

Some of the clevercr individuals, in the idle scgment of the
population which engaged in dice or cards, found that a little
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research into the nature of uncertainty oflercd the prospect of
considerable profit. This research was favored by the lace Lhat
the instrument producing the uncertainty, say a pair ol Jdice,
was a [airly simple one and furthermore it was easy to do ex v
mentation.

The theory of probability was born about 1654 in flse
frivolous surroundings when a French nobleman and wnbler
asked a mathematician, Pascal, for advice on the proper Sl
in a dice game. O\

For somc filty years mathematicians amuscd themselds. and
possibly the gamblers, by working out “fair” oddg™a various
games of chance. By 1713, some mathematiciansg such as James
Bernoulli, had become convineed that the thedry of probability
was capable ol providing advice on more Wnportant subjocts
than dice or card games and that the g{‘lf}pts could be usctul
in a much wider ficld of human affais,)

One such application was to the problems of life insurance
and annuitics. In 1G@‘Z‘,"E’Jé‘ﬁ{ﬁ%;{Eﬂ‘ﬁlﬁt&%“}structed a bile table
from the London death regisﬁé?sj By 1698, Halley (alter whom
the comet was named) had constructed a table and used it in
the calculation of annwifids. Out of these rescarches the subject
of actuarial science“&&\'-’élopcd. For more than a century acti-
arial studies represented the main, and perhaps the only, fruittul
application of p&ifﬂability theory to human aflairs.

In the eigﬁxe.enth century most of the great mathematicians
toved \-\ﬂ'\ﬂi\'ﬁarious aspects of the theory ol probability. But
while t’lﬁ theory became very fancy, little practical use was
made vof it. Nevertheless the conviction grew that the theory
conld be very useful in business and everyday life. Laplace,
writing in 1814, was so enthusiastic that he produced a glowing
essay for popular consumption.

Apart from the work of Gauss, which was uscful in astronomy
and surveving, there was little that occurred in the nineteenth
century to justify the high hopes that probability theory would
be uscful in everyday affairs. Tt was not until K. Pearson and
R. A. Fisher, working mainly in the present century, that the
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applications of the concept of probability to real lile sitnations
excerted a major influence on science and even on agriculiure
and commerce. The stimulus for thesc developments came
largely from the biological sciences.

Why did it take threc hundred years for the concept to de-
velap? Tlyis is not an easy question to answer, but at least part
ol the answer Jies in a curions attitude that has prevailed (espe-
cially among mathematicians} . The theory of probability was{
growing in an cra that acknowledeed the triumph of Reasan,
Reason, and Reason alone, could solve ail hniman prohlems\i}iﬁl
little more than a passing reference to the real world. 4 ™

Ar the theorelical level, it was true that an elabmiﬁt;é"mathe-
matical superstructure could be created entively irf\fi-zims of ab-
stract. symbols. Flowever, when it came to appiic’iations and it
was necessary to replace the abstract symbf_;l':“\\b‘y nunbers, these
auntbers could only be found by going jaitd’the real world and
collecting data (such as death certilicagegy.

"[his process bfo“%thxlé.%lb%‘llflﬁ‘;g}ﬁfy:%}a?}fi i1?t0 br_uising con-
tact with the rcal world. Their dahusiasim quickly faded when
faced with a tedious and prosgic job of gathering data. Many
of the people who poss eed the necessary theoretical back-
ground threw up thely Gids and retired to their ivory towcrs.
Here they focused ahdit attention on problems, mathematically
intercsting but wathout practi(‘.al meaning, which did nothing
to advance theGubject.

The morallol this history of probability (and this samc sad
story hotds Tor many other subjects) is that academic sterility
is an.dver-present danger. It can only be avoided by maintain-
'ng;c?’osc contact witl the real world—unpleasant as this con-
tdet may be at times.

Interpretation of Probability

When we turn to the interpretation of these numerical quan-
tities that ave called probabilities it is necessary to be especially
wary of Academitis (a discase characterized by hairsplitung
and, cventually, rigor nortis). ‘There are at least four major
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schools of thought on the subject and cach of these schools is
subdivided into branches. The literature ol the subject gives
the impression that there are great differences of opinion cou-
cerning probabilities, but this is not really the case.

Nearly everyone agrees on (1) the actual namerical value of
the probabilities in the simpler problems, (2) the rules for
manipulating probabilitics, and (3) the broad principles log
acting in the lace of specific probabilities. In short, there 88
remarkable unanimity of opinion with respect to pr;-wlic:{I\aI's-
plications of the concept of probability. ‘The area ol {isaaree-
ment is mainly one of outlook and philosophy. N

While some of the arguments markcdly resemhbl&tlie (QUESTLeT
“How many angels can dance on the head of ahin? '——a popular
topic in medicval academic circles—thcxeyare other poings
which have been raised that have praq@a} importance. [hese
qucstions, although philosophical ipj¢haracter, have a direct
bearing on the problem of decisiqn..

To pin matters dowiy FerirakrE iy simple instance ia

which nearly all the experta‘éaﬁ agree that the probability has
a speciflic numerical value and [urther that this value is 5.
Let us say that you andnp have agreed to flip a coin to se¢ who
pays for the cokes, ¥ tlie coin comes up heads I will pay, ane
if it comes up tails)you will do the honors. We have examined
the coin carell¥’and have found it to be a newly minted and
balanced n{ﬁk‘d We are also agreed on the rules of the game,
that thedebin must spin repeatedly in midair on the toss, and
that Si;l:(_‘.h eventualities as landing on edge, etc. will not be
ggu’piéd. What is the probability that heads will appear?
S _Nearly all of the experts would agree on the value Lg. How-
ever, if we asked why they chose this particular value, we would
immediately start a hot argument. This would demonstrate
that the probability is associated both with the event (as spec-
fied above) and with the Probability Predicting System (i.e.,
the expert] .

Various attempts have becn made to tie the intevpretation
of the probability either to the event or to the Predicting Sys-
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tem and to disregard the other association. The objective school
concentrates on the cvent, while the personal school concen-
{rates on the Predicting System (mainly regarded as the predic-
tions of a hypothetical person}.

From the objective point of view the probability 14 comes
about as follows: Imagine that a very large number ol tosses is
made with the nickel and that a count is Kept of the proportion
of heads. Then presumably, after a sufficiently long time, we,
would discover that the proportion of heads is very ncarly
equal to 4. Thus this probability refers to what would happep
in a hypothetical experiment which consisted of tossing Hedcoin
a large number ol times. Specifically the number l/g“is"t’lw rela-
tive {requency with which heads would appearﬂ:’@{this hypo-
thetical series. \/

If the question arosc as 1o whether this number 14 was ap-
propriate, it could be answered by pcri’o‘r}qzilng an actual experi-
ment which would correspond to theypothetical experiment.
Thus if the empirical frequency af Béads was quite different
from 14, it would in‘éi"i:":{t%b'i?i%".{fi?&*%ﬁﬁﬂml choice was not
appropriate. N

This viewpoint is, I think, rather easy to follow and it is
justifiably a popular onext does involve difficulties, however,
when an attempt is niade to apply it to praciical problems. Most
practical situationd, unlike the coin fiip, arc not easily repeat-
able, Fven if an:‘aﬁt.f:lnpt were made (o carry ot an actual ex-
periment a],qiﬁ:g“the lines of the hypothetical one, it would not
be poss%’g@té do so. Thus if the probability is used in reference
to theitld on a corn field, any actual repetition ol the experi-
mediywould have to take place under different weather condi-
tions and so on. Hence as soon as one leaves gambling game
sitnations it is difficult to verify whethera numerical probability
is appropriate Or not.

Difficulties in the interpretation of probabilitics when the
events are not repeatabie have led some to take the personal
point of view. From this standpoint the number 14 is a measure
of the individual’s confidence or degree of belief in the out-
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come heads. The number, thercfore, might be expected to be
different depending on how the individual analyzed the situa-
tion (i.e., depending on the PI'S that was used) . However. some
holders ol the personal point of view do not regard this 1udti-
plicity of numbers as satisfactory and take the position that only
onc probability predicting system can be right and the prob-
ability is the number produced by (/s system.

In the coin example, it would be argued, the coin has &
sides and they arc equally likely to occur. Hience the probahitity
of heads must be equal to the probability ol tails. Negynie of
these two events must occur, so the probability ol 119-1}15 plus the
probability ot tails must add up to one. C.‘.onsecqgmly the only
number that can be assigned for the prohabily
ber 14. O

If it is asked, “Why should the t B/sdes be regarded as
equally likely?" the reply would bey {Sihce we have no reason
to think that one or the other si(ic. fsinore likely, the tivo sides
should be consideredeqtudlfibitolork.id his justilication ias
been given the title the p-ri-r:u.fij}{é of tnsufficient reason,

I regard this principle ag rather silly. ILany ot the proponents
of this principle tookiJ;l’u} tronble to try it out in practice, say
as a guidc to l_mttmg{'\cin horse races, they would either give up
the principle or Iose all their money!

However, tather than detail wherein both the objective and
personal viewpoints break down, I want to go on (o give a sort
of synth §18 ol these idcas that has cmerged in modern statistics.
Frmp:ﬁﬁc objective view we shall borrow the concept ol prob-
ability as a relative [requency and from the personal view we
Will' borrow the notion that probabilities depend on the Prob-
ability Predicting System.

Let us begin by regarding the probability simply as a numbcer
produced by a PPS, in line with the personal point of view, Now
consider once again the question, “Is the number 14 appropri-
ate {or the problem of tossing a coin?” Suppose we answer:
“The number 14 comes from a PPS. Thereforc whether it is
or is not appropriate depends on whether the PPS is a good onc

v is the nrn-
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or not.” This gets us into various Compleutu% {i.c., we must
go ahead and %[)eufv what we mean by a “good” PPS). But the
pmhlema that are ¢ncountered, while ifficul t, are not hopelcss.
Accepting the pragmatic principle, we must constder a PPS
good if it wor ks: that is, 1t the IJIOl)de]lTICb acnerated by the
system lead to desirable consequences w hen used to make deci-
$10D8,

While the ultimate judgment will depend on these conses
quences, we cat Uy to s¢t up for a PPS standards which are
more dircctly applicable. When we do it is with the u\ntlr}r
standing that a systemn swhich meets these auxiliary standatds is
not, ipso facto, a “good” system. However, if thesd “Standards
are met there is a better chance that the b}%tEIII\NH work in
practice.

One widely accepted auxiliary :,tandard\u “yalidity.” Sup-
posc the PPS (that leads to the probdbl}\ty 14 in the coin toss
casc) has been used in the past. InJprevious instances it has
assigned to a number of eunts the,pmbablhty 14, and the out-
comes of these events are\"l’\notmv hfﬁ@(lloﬂgﬁ{'e relutive frequency
ol vecurt nce ol these past e\em‘s (as caleulated from our rec-
ords) is nearly 14 the PP avould be called valid. It would then
be plausible to lec! Lh;gf,\the PPS will continue to be valid in
the future, N\

Move generally n° we were to consider cases in which the
PPS zave soneg wrher numerical value ol the ploh'tb]hr\ whicl
Iw 111 TOPTES L.\L\h‘t symbolically by p, then if the system 1s valid it

should }. \Lrue that
(3 (}IQ

}’\ \ Number of cases in which event occurred
Total number of cases where the probability assigned was

Notice that the validity ol the system can be checked even
though the events involved are not repeatable. For example,
onc event might be a scientific experiment, another might he
A horse Tace, and a thitd might be a stock market forecast. If the
same PPS werc used in all cases and if, in all cases, the proba-
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bility assigned were 14, then {with a Tong cnough soviest the
validity of the PPS could be studied despite the fact thar sone
of the cvents predicted was repeatable.

The interpretation of the probability in terms of the predict-
ing system is now fairly casy. If I obrained the probabiliiv 14
from a PPS which 1 have reason to helieve is a “good’™ o, or
more specilically 1s a “valid” one, it means that the event “toss-
ing heads” belongs in the class of events which actually ovegs
about hall the time. O\

This interpretation leads more or less directly to a{;‘txi(‘c: on
action. It indicates that it would he [oolish of me poitess crins
with vou il I had to pay you two dollars when 'tziijs Apprared,
while you had to pay me only one dollar \\'hml”i?&?ids appessi,
For if we agreed to play ten times, I couldse®pect to win ive
times and collect five dollars, but you ¥aitkd be expected (o
win five times and rcceive ten dollars.’}lhcould expect 1o fose
five dollars in the game, so it would: D¢ bad business for me 1o
take you on, www,dbraulvib'n:éé‘y.01‘g.in

Ny
9

Sharpness N

While validity is a desitable property of a probability predict-
ing system, the facg that a system has this property does not
automatically insgxe that it will be a uselul system in practice.
A second i]‘ﬂpgl"\téfli auxiliary requirement of a PPS is that 1t
be “sllarp.” W

A sysremﬁvill be called “sharp” if it exercises discrimination
and do@smot put events in the same numerical category if it
is wotthwhile to classily them further, Suppose, [or example,
th;it,\’we want to bet on a series ol horse races and, for the sake
}{ simplicity, there happen to be six entrics in cach of the races.
When we visit the track we look at the horses in cach race and,
since we know very little about horse flesh, they all look pretiy
much the same to us. We therefore can sce no particular reason
for preferring one horse to another. If we apply the principle of
insufficient reason we conclude that cach of the entries is
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equally likely to win. Consequently we assign to cach horse the
probability %.

This is a very naive system, for it is well known to devowees of
the sport of kings that every horsc does nof have the same
chance to win. Nevertheless, the system js completely valid,

To sce this, notice that some horse must win cach race. So the

pumerator in equation (3.07} (the number of cases where the
event occurs) is simply the number ol races in which we usel
the system. The denominator, the total number of cases, will\p@
the number of races multiplied by six (the number of f}nrsés
i each race) . The number of races appears both in thequmera-
tor and denominator and therefore cancels. Consegyently we
are left with the fraction % which is exactly the ass}g_fned proba-
hility, \
ITowever, any individual who chosc to nlx@I’\\\}ﬁis money on the
basis of this completely valid system bgis‘é}l‘ on the principle of
insufficient reason would lose his shittin very little time. 1le
would lose to a PPS \-\'lndw.ﬂﬂﬁélﬂ}pééﬂﬁ@sgngt completcly valid,
was a good deal sharper. AN

This competitive PPS would discriminate more closely be-
tween the events (Le., 110\514) It would not lump the horscs
into a single class butws@uld separate the better horses from the
poorer horses and a;sig}l larger probabilities to the better horses
and smaller prabghilities to the poorer horses. Since the meth-
ods of doing‘jt{ﬁ‘s are complicated, let me go back to a dice
game cxample”where the naturc of this discriminatory process
is casier O'wee.

In,Qﬁé"game two dice are tolled and the spots which appear
ot “the top faces are added together o obtain the “point.”
Fléfen points are possible since any number of spots hetween
two and twclve may occur. The game is playved according to
rules which are designed to prevent control of the dice.

Now a very innocent person might think that the eleven pos-
sible outcomes are equally likely: in other words, that the proba-
bility associated with each point is ¥ ;. This system is also com-
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pletely wvalid, but it is a very impractical one to try in actual
play. In order to develop a sharper PPS the various auicomes
must be separated into more and Jess likely categorics. ‘The
standard system for assigning probabilities in this game gives
the following table:

Standard Table of Probabilities in Dice Game

POINT PROBARILITY POINT
(Outcome) (Ouwt comc;): N
2 1/36 12D
3 2/36 PV
4 336 PP\ RL
5 436 RAZE
6 3/36 \/ 8

7 6736 \
O

Thus instead of lumping all of thelgdtcomes into a single
class with probability %, this S}fsEel}l :distinguislms six cliffer-
cnt classes. The stand:e:cl Elble } ;-1@'}ge"er_1 tound to be the shavpest
system that can be (:(\;’nst\{“‘l.lciga{t{:.lr.a'i%'ﬁ']ﬁ'l}?remnnably be possiliile
to have eleven different c.k-i:g%cé, instead of only six, but it has
been found that this fddther discrimination accomplishes no
practical purpose. , O

From the abovgr\t{}bie it is possible to devise a large number
of valid systems\swhich will be intermediate in sharpness be-
tween the ‘@Cgtially likely” case and the “rabular” casc. For
examplcf{k}e outcomes 2, 3, 4,10, 11, and 12 could be put into @
single, QﬁSs with probability % for each outcome in the class.

‘THus explains how different predicting systems, cven it they
~afe) valid ones, may assign different probabilities to the same

Negutcome or event. It may also scrve to clarify a point that I
made carlier that the probability should be interpreted in terms
ol the PPS rather than in terms of the event.

Now the tabular probabilities are sharper than the cqually
likely oncs. How is this an advantage?> Why will the sharper
system be more practical?

Part of the answer lies in the fact that, in gencral, it is easicr
to take action when the probabilitics are close to zero or one,
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that is, when the event is “sure” to occur {ov the cvent will
“surely” not occur). Tt will be noted that the probability of get-
ting the point two (snake-cyes) hus gone {rom %4y = 14, in the
equally likely PPS 1o only Y in the sharper PPS. Il we have
a choice of one point on which to bet (the payoft being the
same for all points), we would obviously be loolish to select
either two or twelve

A more compiete answer involves the idea ol compeltition he:
tween systemus, Consider what would happen if Mr. A (who
believes in the cqually likely system; were to agree to_filay)
against Mr. B {who 1s aware of the tabular system) M. B
proposes the Jollowing game: Tach player will wagerlone dol-
lar. Mr. A will win if 2, 3,4, 10, 11, or 12 comes 1.1;)'\1\711". B will
win on the other live numbers. \%

Using the equally likely system, Mr. A tﬁ}‘;&m*es his chances
as Jollows: OF the eleven possible cascs helaeill win six and
his adversary in only five. In a hundrédiand ten plays he can
therefore expect to win“}%DAUO,‘ lose 45{:)0"‘0(), and come out with
a wodest but i\-'orth“-‘hil(?\'i’)\;t'_)cgjtl ?j%ﬁfﬂl.@ﬁ?r llsequently Mr, A's
decision. based on the equallytlikely system, is to accept this
foolish offer on tlie part of M B.

On the other hand, J\;Igr".',ﬁ, who is the sharper, calculates his
chances by adding uf)\?i'ﬂ: probabilities which appear in the
table for the caseg.ﬁ,lﬁ, 7.8, and 4§, This gives:

‘j\:zj‘\+5—|—ﬁ+5 242
O 56 a6 :
\'%" a6 & 3

In a_biihdred and eleven plays he therefore would expect to
1\-’in‘5iﬁl.’0() and to losc only $37.00 which would mcean a tidy
pﬁ&ﬁ\t of $37.00. This looks to Mr. B like an excellent business
proposition,

E Mr. A\ is foolish enough to gamble. he will learn (unless
he is remarkably lucky or stupid) that it is not enough for a
PPS o be valid, that for a PP§ to be practical it must also be
sharp.

This example ilJustrates how a PPS can be made the basis for
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decisions in a fairly common situation which might be called
competilive decision. Rivalry of PP§’s occurs in many everyday
affairs and particularly in horse racing, football pools, the siack
market, and business decisions.

The people who bet on races are using predicting systeries of
various kinds. Some are ferm bettors and basc their decisions
on the records of time trials and previous raccs. Others et on
the jockey, while still others play hunches or drvcanis. THebe
different predicting systems lead to different opinions coiHM-
ing the outcome of each racc. Those bettors with eno@@lt con-
fidence and cash may pit their systems against a so” of con-
sensus system represented by the parimutuel maghdnes.

In actual track wagering it Is not enough fo¥ the individual's
PPS to be merely better than the concensusy because the track
and state take out a sizeable cut for opf.j&éin o CXPENSCS, ProHLs,
and taxes. Conscquently in order oM consistently, the indi-
vidual's PPS must be much bettgr.t'}ian the parimutuel PPS.
This does not seem ‘1 HENHERERR op8tEh; “horse-players die
broke.” Q \

It is not very easy to givwe a clear-cut definition ol sharpness
in complex situations, Jike horse racing. Perhaps the closest that
we can come to a ﬁaét}%cmatical formulation is one similar 10
the quantity infopmation in the techmical sensc delined by
Shannon® in e’ promising new work on information theory.

This the{)'fy"is a bit too difficult to describe briefly and 1 will
only a(‘%th'at with the aid of the mathematical yardsti(:k, “11-

formfi.tjﬂn,” it is possible to make quantitative comparisons
h(il'}’créen PP$’s insofar as sharpness is concerned.,

S ULet me remind you that even if a system 1s both valid and
sharp it still may not be uscful in a given situation. Flowever,
these criteria are useful in rejecting PPS§’s since, if a PPS is
neither valid nor sharp, it is very unlikely that it will have any
practical valuc,

1 $hannon, C., Mathematical Theory of Communication, University of Nlinois,
Urbana, 1949.



PREDICTION 53

Summary

Although several techniques have demonstrated utility for
practical prediction, no methods arc known which provide
completely accurate forecasting. 11lowever, progress can be made
by {acing up to the problem of uncertainty, by attempting to
incasure the degree of uncertainty in a quantitative fashion.
Tl theory of probability provides a method of measuring un- {\
certainty. Application of this theory leads 1o predicting sys(ems, .
which associate a probability with each possible 011tf.ome,,~:{n\d'~'
this probability can be wsed to make decisions. Two c}gftjr}ﬁ'ble
characteristics of such a probability predicting systexp.;a}*c ¥alid-
ity and sharpness. A PPS which is deficient in theseagspects may
lead to <ecisions that have unfortunate C('JI?LSqul\Z(Y’}T.%S.
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CHAPTER 4

PROBABILITY

N
A\

The Direct System 7\

: W

Although the last chapter pointed up the need @ probabil-
ity predicting system and went on o discuss Tl”l‘(f‘\d.{":iiTEl]}](_‘ ¢har-
acteristics that we would want such a systenisiw/have. it did not
go into the practical question: How do i construet such @
PPS: While it is not going to be p(:ssj{ﬁ?@. in this book to give
a thorough answer to this questionw Lact, human knowledge
has 1ot reached a stage where sucthan answer could be siven) it

will be possible to h\i\'\“éwadfjc{gﬁli%gﬁ WEBI e stnipler systems.
Any one of the prcdicti(mfte‘chniqmts used in science nuhizes
the past as the guide to e fature. All of us are in the Labir of
dealing with impen,d?'n\t{ situations by scarching through the
past for similar sifwations and then using these to make our
decision. By apd:l’arg‘e this is our most useful habit and most

prediction syStems are essentally codifications of this habit.

Asl lgt{lél,\gut of my window the sky is heavily overcast. The
qucsﬁ\siiiﬁ my mind is: “Will it rain in the next howr?” Ler me
callehe present situation X and the outcome ¥. Then what I do
=T, search my memory for past situations which resemble X and
Nty to recall whether or not it rained in thosce cases. Now my
memory is rather untcliable, so that T might try to extend this
collection ol past experience. I could ask my [riends, or a mete-
orologist if one were handy, or perhaps see what was available
on the subject in the stored experience of books or periodicals.
In this way 1 could try to gather wogether information about
a large number of past situations that rescmbled X and also the

54
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past outcomes. Suppose only two ontcomes are possible: ¥, it
will Tain in the next hour, and Y7, it will not rain in the next
hour. Then il 1 have quite a large number of past situations
which T feel resemble X it is Jikely that I will encounter con-
flicting precedents—both outcomes may have occurred. Clearly
{ must find some method of resolving this conflict. One plau-
sible way o do this would be to count the cases in which the out-
come was “rain within the hour” and divide this number by
the total number of cases in my experience. This calculation
would give the proportion of cascs in which the eventual oM
conie was vain. O

1£ T now called this proportion the probability of rainhyrould
have a probability predicting system! This method Prvill call
the Direct System. Despite 1ts simpiicity, it s I3 Pasis for all
other systems and is, in this simple form, ol g\{ear pramical -

{

portance. ¢*

. . AN . .
Let me therefore list the steps 111\-'0@&&111 using the Iirect
System: D4

&\
www dhraylibrary org.in .
Fre similar 1o the

(1) Collect a series of situatigns whi
sitiation to be prcdicr.éd: Fach situation in the serics
will be called a case &

(2) List the outcomesGihich have occurred for each case.

) Count the nuu}bcr of oceurrences of each type of out-
come and alssAhe number of cascs.

(4} (?alcula;{:thc probabilitics by the rule:

\ Number of occurrences of outcome

Probahil: t\&@}('illttfl)l]'ltf = —
N\ Total number of cascs

I}]c\:’il’fformation that goes into the Direct System is not al-
\\-"a\\\"s\:(:ﬂ)(';-iint‘.d by searching past records. It is characteristic of
science that instead of scarching the past, an experiment may
be sct up to obtain the information. Tt is not very feasible to sct
up such an experiment in the casc of weather, but suppose in-
stead that T wanted to predict what would happen tomorrow
i T use a particular nickel in flipping for cokes.

It is now possible, and indeed quite casy, for me to run an
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cxperiment today in which 1 flip this coin. sav. 10 fes,
When 1 perlorm the experiment 1 find thar hoods ey
h6 times.
Then, applying the Direct Systeni:
re Number of ocourrences ol heards
Probability of heads = —— —. — =~ LT e e
T'ocal nuniler of fips
RN .
— . =0.56. ~
100

In exactly the same way [ would find the pmha!>iligy\'r.§‘*}:ails
is 44/100 = 0.44. The probability ol heads plus e’ proba-
bility of tails adds up to 1.00 as mnust always 11:1}'Jp?:ﬁ"l‘t‘.g:n-t:'.lt‘.ss
of the particular experimental results since '»’j\"

Number of flips = Number ol heads Th\Numbcr ol tails.

1f both sides of this cquation are divid'flth‘ by the number of fiips
then the lefe-hand side of the cql’mt:i{in is equal to onc anel the
righi-hand side of H‘i‘é‘“tﬁﬁ%‘ijﬁ?ﬁéﬁy-@@ml to the sum of WO
quantities, one of which 1s e probability of heads and the
other the probability of;ttail’s‘ This same reasoning extends to
the case in which thesé are more than two outcomes possible
providing that one\"&fd only one outcoine can occur in a given
case. O
The probahility of heads which T have obtained by the coin-
tossing @};liﬁ’iﬁ1cnt. is not cqual tO 1/_,, the number thar was
prcvio,@y'rncntioncd as the probability of heads. This {act 15 2
[urtli;{:ar demonstration that the probabiliw depends on the PP3
”415'5‘..&' and in particular on the body of data urilized by the PPS.
\IT instead of 100 tosses, I had made 1000 flips, then a still dif-
lerent value would be obtained, Broadly speaking, tie larger
the expericnce, the more reliable are the values obtained by
{he Direct System. Since there is a voluminous literature of
| coin-tossing experiments (some of which involved hundreds
of thousands of tossesy, there is a great dcal of experience with
the subject. The probability of heads as caicalated by the
Direct System using this vast experience is practically L.
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‘[his raiscs the questions: 1s all this past experience o1 other
coits in other lands and years really applicable at all? Do these
previous experiments provide situations that ave really sinmiilar
to the situation that 1 am frying to predict? These questions
exposc & very cerious difficulty that arises in the practical ap-
plication of the Direct System, Tt is often very hard 1o decide
whether a past situation 13 close enough to the situation X 0
that it should be included 1n the calculations.

Repeatability O\

The coin-flipping situation is an cxample of what 1 have(pre-
viously called a gambling game problem. Although suchiéxer-
cises are very popular because of their simplicity, it/must be
understood that they represent a very special problem of rather
Jimited wtility in practical applications. RS

The distinguishing characteristic of such {toations as flipping
a coin is that the events arc repeatablet':”i his concept of re-
peatable cvents is of great importan,qe’ir’l many of the mathe-
matical theories that dcmwx\\?iflllf”‘ﬁifljﬁfﬁfﬁ iegesina closcr examina-
tion of it is worth while. N\

~

I have not becn very spcmﬁ(f bout the situation to be pre-
dicted which 1 have call c;d"ﬁh)ping a coin. 1€ T wanted to go Into
detail in describing thgsituation, 1 would have to say (1) what

crson was doing thie yossing, (2} what coin was being used in
the toss, (3} wheft/and where thie {lip was lo be pcr[ormed,
and so on. If\t}xi event to he lorecast were described in this
much detgmﬁ&the question arises: Are the coin flips in the pre-
liminarygxperiment actually similar to the one to be predicted?

Eyén if the same person and coin were involved in the pre-
1irN1>iary experiment and in the event to be predicted, the ex-
periment may very well be performed at a different place and
necessarily at a different time. Atmospheric conditions, hu-
midity, magnetic ficlds, the position of the moomn, and many
other conditions will be different during the experiment from
what they will be in the situation to be predicted.

An impatient reader will fecl that thesc remarks are irrele-
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vant, that the moon does not allect the flipping ol the cobi. and
I will agree at once, Experience has shown that one [lip of a
nickel resembles another and hence that the cases in the coine
tossing experiment are similar to the sicuation to he predicted.

What 1 want to emphasize 1s that this characteristic s morve
or less peculiar to gambling game problems. Vhe fact that the
coin flips are indistinguishable is the basis for the e e
peatable evenis.

In other words, the experiment on coin fipping has by DUT
formed by different people with different coins (f }HiTerent
places and even in different centurics. but the rgawlfs are such
that in almest all of the varicus experimenty e application
ol the Direct System lcads to probabilitiesdIove to 14 or 0.5,
Still another way of saying this same thr)‘g‘is to say: The prob-
abilitics associated widh coin Hipping dre siable. This stability
is partly duc to the fact that the sies of the gae are st up
to try to insure it. O

Since the gambli«ngwl{_gihﬂa@l}ﬁl?" mngsithave heen extensively
studied for over three Iulnj(:i‘l{;d vears, a greal deal has been
learned about the perloymance of the Direct System. On the
whole the Direct S\J-"S’L:.‘.}.{:l 15 a good one. It has heen [ound that
it becomes pr(_)gre@'c‘ly better as the size of the experiment
is increased. N\

‘This stateyieh U requires some qualifications. IF a large nunt-
ber of indjyidlals perform the experiment of flipping a nickel
a hund rr.’"fk:times and then each individual applics the Direct
Syster@ %G obtain a probability of heads, the numbers obtained
willifiot all be the same. If these numbers are examined, it

”

Wi be found that they tend o be closer to 14 than to either 0
\n; 1. )

If these numbers are plotied on a graph, the points will be
clustercd about 14, but some of the points will be wide ol the
mark.

If a 1000-flip experiment were used instcad of a 100-Mip one,
and if the probabilities were obtained by the Dircct System,
the corresponding graph would also show a clustering around
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14 and sone scatter, 'The difference would be that in the larger
cxperiment, there would bo less scatter and the points would
be more closcly grouped about the central value.

Occasionallv a 1000-flip experiment will lead to a probability
that will be further from the mark than a 100-flip experiment
bui the opposite will be frue much more olten. On the whole,
the larger cxperiment will lead to more nearly valid proba-
hilines.

Sharpness was the second characteristic of a precicting system |
thar was discussed in the previous chapter. In the case ol ’L".Qi}l"d\

harp.

and otlier gambling game problems. the Direct Systenn i
The repeatability of the events iinplies the Futility gf Jurther
discrimination helween outcomes. L

Baseball ’;’\\J

T.ot Us turil now 1o a siruation ‘;\'higli’}\wﬁl resemnble more
closely the sort of problem that will be ficountered in practical
predicrions. T.et the X wﬁ.ueﬂ.&:@aulllﬁ%ﬁf}iﬁg,ﬁc‘\r York Yankees
will play a baseball game with vtJ‘,'nvé.*l’ms;ton Red Sox at Fenway
Park, N

More than two ontcomessare possible since the game may
result In a tie or it m: \-'Qi)@}mined oul: however, for simplicity
let the outcomes he jil}lnecl to ¥, the Yankees win, and 7, the
Red Sox win. (Bag@ball pavtisans may substitute other teams in
this example ifybht two teawns chosen here stiv up unpleasant
cmotional \CE}}?iiOllS.)

The fig{Miing that must be done is to colleet a serics of
situaLjr&r;ﬁ"which arc similar to the situzation t be predicted.
B L'"%]“ns poses a pmh]em—what situations, il any, are similar
Lhm one 1o be predicted.

One possibility would be to consider all games plaved be-
tween these two teams so lar this scason, The Direct System

to

would then give

Games won against Red Sox
Games played against Red Sox

Prebability of Yanks winning =
a
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It may be noted that quantitics such as the above ave widely
used in reporting baseball results. They are gencrally called
percentages rather than probabilities.

Baschall fans would be likely to object to the above wicthod
on the grounds that home games differ from road gares. In
other words, all ol the games played between the two feams
should not be regarded as similar; the games played in Yankee
Stadium should be omitted from the series and only whose
played in Fenway Park should be used. ¢O)

S¢ill other baseball fans would want to know \\'.h’o:\\\-'c‘re the
starting pitchers and what other players were aitfie starting
lineup. It might also be objected that, 1f this v a late scason
game, the results of the games played at thstart ol the season
should not be included because the RedsSgx have a reputation
for improving over the season. \ o

Note that if these objections arg\gensidered in judging what
is 2 situation similar to sitl.lauinh" X, the effect is to whittle
away at the 01‘igin‘é’l‘“ﬁﬁjﬁ%‘f‘{{&fﬁfﬁowf%ﬁL cases which couid be
used to obtain the probabilities by the Direct System. ¥irst,
those games played at Yankee Stadium would have to be
omitted, then carlgﬁé&son games would have to be dranped,
and, in fact, if allef the objections are to be met, the serics
would get shoftér and shorter until eventually it would dis
appear altoiether! No games previously played could be re-
garded ;L“{;'?i{hilar to the one to be predicted.

Regeavch workers who have gone to great lengths to collect
dqtzi;.ffrequemly encounter this shrinkage of experience. A doc-

_ 0T ‘may begin with a series ol three hundred cases but after
_eliminating cases for one teason or another, he may find he is
left with only fifty cases on which to base his article.

Now as the series gets longer the walidily of the predicting
system improves; similarly as the series gets shorter and shorter,
the validity deteriorates. If the definition of a similar situation
is made too strict so that only a few cases can be found, the use
of the Direct System will lcad to unreliable probabilities.

On the other hand, if the definition of a similar situation 1
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made 100 loose the series may be Jonger. the validity may be
improved, but there will be a corresponding loss of sharpness.
Thus if a Direct System using all the games between the two
tcams is in competition with a Direct System using only those
games at Fenway Park, the latter may very well come out ahead
cven though its validity is not so good.

This problem of validity versus sharpncss is one of the major
headaches in setting up a predicting system based on the
Direct System. A\

The same problem is ¢ncountered in most applicatitms\' of
probability which lic outside the province of gambling \games
—for example, in calculation of the risks in in.‘ii:lll:af‘rl(:é. An
applicant for insurance may be a fifty-two-year-oldnan. Elabo-
rate life tables by age and sex are available, but shotld these be
used? Suppose that this applicant is a hur.chg\\]?resumably the
probabilities should be calculated From ‘e&:’pé'ricnce with fifty-
two-year-old butchers. Insurance comp@its have actually con-
structed tables for diﬁCWQQvafHHRﬂHﬁ?fAOL%,LEFY alsq be };nown
that this applicant lives in Massaglipsctis, and there is evidently
no limit to the further details that might be added. Fach addi-
tional condition will redugéithe number of cases that can be
used 1o determine tle pfobabilities by the Direct System. At
some point a line mugt\ac drawn.

The place to dpaw’/this linc is where the advantage of in-
creasing the sl ?E}T\ICSS is offsct by the decreasing validity, but
the actual detdemination of this point is no casy matter. A
partial angwer is discussed later under the heading Relevance.

Anotlfes " method of getuing around this Hmitation of the
Dircg'tS‘ystem is to devise more involved probability predicting
syst ms.

I want to emphasize one point very strongly. The distinction
between the baschall problem and the coin situation is one of
degree rather than kind. In the real world, there Is no such
thing as a completely repeatable event. Any real coin is subject
to wear and hence successive flips are not similar in an absolute
sense. Gambling games do represent the nearest thing that we
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have to repeatable events, Some experiments in phvsios whiach
arc rigidly controlled arc also very nearly vepeatable evonis, The
repeatability is considerably less in the biotogical serences and
still less in the social sciences. There has been el aicomaent
as to whether or not the complex sitnations cncowntered it the
study of history can be regarded as vepeatable cven g foose
seIse. A

Most practical decisions involve prediction n situatigisin
which the problem of what constitutes a similar sitw Ilr{V».\l\ at

least as dillicult as in the baseball ex: unple, \ O
To summarize: N
. R
(1) The Dircct Systern may be applicd pgiy) easily (o repeat-
able events. )

(2) In this case the longer the seues\ ‘Ore arcater the validity
of the Direct System. A\
{3) The Dircet Systen is sha1p insolar as repeatable events
Are COTCErnet w. dbrauhbl"ﬂry org.in
{4} When the cvents .-11e,pot repeatable, the Direct System
begins to run il}’bo"dif}i(:ultics, and its use necessitares
that a balance ki $truck between validicy and sharpness.
{(3) Todeal wittk\ﬁt)ﬁrepealahility more claborate predicting
systems may be needed.
The Ram{ofnization System
\'Iuch\:(»)}’fhe discussion of probability in the older textbooks
on Lllb subject concerns games of chance: coin flipping, dice
thrsm 1r10 and card p]d\«'ll’lo‘ In such games a device or mecha-
\nkm 1s deliberately introduced to provide a random or chance
factor. The use of such a device is called randomization, and
this process has many practical applications outside of ihe
province of gambling. When this process is used, it 15 possible
to construct probability predicting systems by what I will cail
the Randomization System.
T'he basic principle of the Randomiration System is to con-
struct a set of possible outcomes, all of which have the same
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probability. A balanced die, [or example, has six faces and the
corresponding six outcomes have the same probability. Suppose
that I win if a 5 or 6 appears and lose if 2 1, 2, 3, or 1 appears.

The probability ol an event, such as winning, is calculated by:
Trobability of event
Number of possible ontcomes where the event occurs
- Toral number ol possible outcomes

To calculate my chances of winning on  cast ol the die I note
thal theve are six possible outcomes and that 1 will win af Ci'L\h"er\
ol two of these outcomes should occur. Hence «

s
L 3

Probability of winning = 2/6 = 1/3.
N

Nortice (hat it was not necessary to collect date or to perform
an experiment o arrive at this number; it was’only necessary
to kuow how a die is constructed. To applsdthids Randemization
System to the coin-toss problem we neeg :only know that the
coin has two laces, one of Laem_hm’ds," and we arrvive at the

~www . dbraulibieary org.in
result that the pmbabmty 0 leg.lg]fm 15 l/é.

At first sight this Jooks like Aunuch quicker and easicr way
to set up a PPS than the Dipgde System. A closer look. however,
shows that the Ranr_lmnmﬁu\m System implements rather than
supplants the Direct S}\J}m 1f we want to apply our Randomi-
zation Systen! to the\real world, then its success or fatlure will
depend on the ;pr:h'rfi(_:u]ar randomization device that 1s used
in the real njn{lil}l? We can take great care in the manufacture
of this (‘.l@*ff@é" (such as a coin), but when we want to test the
device ;;lii’d see if the probabilities are, in Fact, equal, then we
are hick to the Direct System. Aftcr a randomization device is
tllé{ﬁ}lg}lly testedd we may confidently use the Randomization
Systern, and its usc may be very successlul. Sometimes the user
may forget the part played by the Direct System.

Mathematicians seem to be especially prone to ammesia of
this type; in fact, they may even forget that a randomization de-
vice is involved. This leads to the unhappy use of the Random-
ization System as the definilion of probahility, a usage which

Q
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was nearly universal in texthooks on probability untd the past
decade. T'he definition of probability in termns of cquatly prob-
able outcomes s patenty civeular, but in spite ol s {or,
perhaps, because of this) this dehnition was populioy with
mathematics teachers,

The Randomization System is used in practical problems,

such as sampling, with considerable success. This succrs, say
in the calculation of the odds quoted by gambling howscsNhas

been regarded by some innhocents as a verilication ol 1\-f\})tm-
ciple of insufficient reason. Actually, ol course, h(u 1 very
good and sufhcient reason for the cqual l)]'Ul)El[)lLﬂT}g{}i e out-
comes on the roulette wheel in a legitimate cagigdy; il the owner
does not keep his equipment in balance then) smart cusiomers
can “break the bank.” \

A very great cffort is devoted by {ep}l gambling estiblish-
ments, such as those in Nevada, O mmre that the resi world
roulette wheel comes very close o “rn ideal randomizing ¢.ev 1C€,
The whecels are Lomrﬁﬁél’ﬁ?‘t@éﬂ@ihﬁtlgd&}mtcd The equal prob-
ahilities do not come fr 01 ag’nor(mce but [rom the usc of the
Direct System to insures Ahat the randomization device leads to
equally probable our,cofmca.

I might add—ai«@\’ﬁ{is will be news only to the very innocent
—that 1lleg1t1mate gambling houscs sometimes have an equally
good and sufﬁuent reason to rig their equipment and, in such

cases, the rmm bers on a roulette wheel and the faces of a die are
not e a"}} probal:le.

&

.. {Ad‘vanced Systems

i

<\; “Over the centuries a trcmend_ous amount of cxperience has
been accumulated, organized, and analyzed. Frequently it is
possible to boil this experience down into a few general rules—
a process at which the scientists have become expert. Hence, in
facing problems of prediction, we are not operating in a
vacuum. Therc are many things that we may know which might
assist us in making predictions. For example, we have the laws
of physics and chemistry which we can use in an engineering
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situation. This body of information can appropriately be called
advanced knowledge.

It would be wasteful not to take advantage of advanced
knowledge when it applies to our prediction problems. It may
enable us fo avoid much of the experimentation or historical
rescarch which would be necded to apply the Direct System.

“The more advanced systems for prediction arc technically
complex and require the construction of a mathematical model.g
1 will therelore not attempt to describe these systems in this
chapter, but will postpone the discussion until the chap'tr(r"n}l
measurenent. My

Symbolic Langunage '.\\‘.

One of the major advantages of numbers Gx&l words is that
numbers are much easier to manipulate. Gonbributing to this
advantage is the fact that the rudes Fopdummipulation can be
given precisely and completely. (’]01‘:5‘etq1‘tently it is not only

easier o perform the ma ]ﬂ)lllk[tié]‘l but also to check the
www.dbraulibsary org.in

N

procedure.

‘The rules for manipulatingfp?dbal‘;ilit.ies can be reduced to a
few simple axioms, and meie elaborate rules for more complex
problems may then be darived irom this original set ol rules.
‘This mcthod of stagh\g} rules avoids the danger of conflicting
instructions. 1 shallbresent these axioms without justification
other than the I‘(;?I\Hal"k that they have worked very well for many
vears. It is gather curious that although there are many different
viewpoi'l\r&\(”)h the topic of probability, all of the approaches
that [ have scen eventually lead to this same set of rules. The
jus{jﬁ\c;itions differ, and experts differ on whether the justifica-
i‘h‘)I{S ave valid, but the end result 13 the same three axioms.

Since there are only three rules, and since these vules are
fundamental to an understanding ol probability, I hope that
the reader will forgive me if the discussion becomes a little
technical at this peint. I think it will be worth your while, if
you are new (o this subject, to reread this section several times
so as to master the ideas introduced here.



66 DESIGN FOR DLCISTON

Before I introduce the rules themselves it is necessoy to set
up a shorthand method ol expressing probabilitics since verbal
descriptions are very cumbersome, This shorthand is. ol course,
the symbolic language which 1 have frequently mentioned be-
fore. However, if you think of it siinply as a shorthand device, a
conventent abbreviation, it should occasion liude dilliculy,

Onc obvious thing to do is to abbreviate the wiondd " praba-
bility™ all the way down to the initial letter 72 Now w Nl
usually want to refer o the probability of some CVQNIFO e
nced a replacement for the word “of.” Suppose ihal.\lhc cvent
itself is ¥; then we can use a parenthesis to synﬂﬁﬁﬁ‘m the word
“of™ and write P (¥) for “the probability UFWQ”\’"”I"M.«; clov ice I3
regularly used in mathemaltics, N\

We have already seen that the probabilityof an cvent depends
on the event and also on the predi(_:tiy{éls}-'stcm, aml we need to
bring this concept into our notatigind have used the term pre-
dicting system to cover the entire ’}'jrocess of determining a nu-
merical probabilit}wwl\mbi@,Ui.tﬁ;“ﬁ%YtR‘I&sWhe details of the situa-
tion to be predicted, tl'le‘rﬁ;’:fl'lod of prediction, and the data
used in prediction. Iaet’mc’how draft the symbol X to stand for
the whole kit and kabpodle involved in the prediction sysreni

The mformaticarépresented by X is giver i advance, and
hence, when I refer to the probability of ¥, it is understood that
this is the plzolfnab“ility of ¥ ¢f this information X is given. I have
alrcady infroduced a vertical line to represent the word “if”
when ]\il}é& Y| 4, to represent the outcome ¥ if action ong 18
t.akqn;’\l‘n the same way I can write P(Y | X) to represent the
prabability of ¥ if the prediction system X is used to obtain the

\”?m.fmerica] value. Notice that P (¥ | X} represents some numeri-
cal quantity. If X is fully specified then the probubility of Y,
according to this PPS, can be calculated numericalty., One word
of caution: Do not conlusc the vertical line which will be uscd
for “it” with the slanted line which will sometimes be used to
signily a ratio.

Strictly speaking we should always carry along this X in our
notation, but quite often the PPS involved is specified in detail
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and it is common to omit the X when cxtensive symbaolic
manipulations are involved. In this event the X is understood
to be in the formula, but is not actually written down becausc
it cloes not ordinarily enter into the manipulations and hence
is cxcess baggage in the formulas. Therelore when dropping
e X will cause no confusion, I will omit this symbol [rom
the notation and write P{¥) instead of P{¥ 1 X

T have cmphasized this pomt because you will {requently
find that the X is omitted in much ol the technical work om
probability. Even though it may be dropped for t'Oﬂ\’(rlli(;r{itE;.\
the X is still there in spirit; otherwise the symbol is meaning-
Jess because, as we have secn, the pumerical value for 11]?‘. .}'ﬁl*oha-
lility of ¥ depends on the predicting system. Ngg‘ki‘.t ol this
detail has led some cxperts astray. ’

Let us 9o on to consider three little wopdsAvhich are the
key to the logical structure of our 1angu§g‘%ﬁ As soon as we
want to talk about combinations ol e¥&uts these words st
he pressed 1nito service. These words ase “and.” “or,” and “not.”

wiww dbraylihrary org.in
Suppose that a penny and a n;{;je]a dre ﬁlpped and that the

™

outcomes are designated N\

Y  Heads on the p{en\}-‘.
¥’ Tailson th%:mf}f {or netheads ou the penny}.
1€

zZ Heads onst ickel.
Z7 lads og ghdnickel.
‘ O
Il we want tp\ta‘lk about the ountcome of this double toss we
use the word€¥%nd,” “or,” and “not.” For example, we would
deal \\«'jth..si%l combinations as:
Botl the penny and the mickel turncd up heads ¥ and 2.

1ejof the twe coins {or botly) showed Lails ¥ or Z7.
The coins wore not both heads not (¥ und Z).

We run into dilfficaltics immediately with ambiguities in
ordinary language. The word “or” has two meanings in English
(“or” and “and/or”). In technical probability discussions the
word “or’ is used in the sense of “andsor” (see the example
above) . When the other meaning is intended a restatement is
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made. For example, to deseribe the outcome when one of the
coins showed tails but nof both coins we could say:

Y or 77 and not (¥ and 27},

Although this sort of thing may look like acadvmic hair
splitting it is not trivial. It is very important 1o know just what
combination of events we are talking about. In cvervday lan-
guage this is sometimes made clear by context or adiNpional
comment, but in symbolic language the ambiguity 1t be clim-
inated at the outset. O’

The notation used by statisticians is (o cfrll})ltnjy:?‘a comia tor
the word “and.” Thus V.Z represents “Y apd¥.” 1 his comes
from standard mathematical notation. ~¥ie logicians use a
somewhat different symbolisim which piovides an analogy to
ordinary arithmetic. I will use the 1\-'({’(1} “and,” “or,” and “not”
at first so as to avoid intl‘t)(lllch}g’.:@xtra notation. later on I
will use the comma notation fo’n“'aﬁd,” but 1 will not need sym-
bols for “or” Ell'ld‘w;;m_ﬂﬁraulib:ﬁa;'ﬁr_or‘g_in

Rules for Manipula;i&ﬁ'

Now that we lla»:etéiul' shorthand, we can go on to the three
rules for manipuldtion. The first of these rules consists of three
sub-rules whichizhave the practical eflect of specilying the scale
which will b@used for measuring uncertainty. It would be pos
sible to sg{u’p a different scale: the use of odds represents such
a scale(However, the word “probability” is used in its techni-
cal s€nse to refer to numerical quantities that are common or

dgitiina] fractions; i.c., to quantities between 0 and [ such as
\’“‘% or 0.5,

If the predicting system assighs a probability to an event
that is very near to one then (if the PPS is a good one) we
would act as if the event were going to occur. Although in prac
tice we would not be ablc to make uscful predictions that are
going to materialize 100 per cent of the time, we can constroct
a trivial case in which we can predict that an event will occur,
and we will always be right! Suppose that I am predicting the
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weather and [ set up two predictions: “It will rain tomorrow”
and “It will not rain tomorrow.” Then I can safely predict: “1t
will Tain tomorrow” or “it will notrain tomorrow.” This predic-
tion isn’'t of much practical use, but it can be used to sct the
upiper limit of the scale:

{#.01} Rule Ta: P(YornotY |X) =1

The probability of ¥ or not-Y is equal to 1.

In a similar manner there is a compound event that T can fetl
confident will net materialize, and it can be used to sgt\tht
lower limit of the scale. Tf 1 predict; “Tt will rain Lomor{o}‘\’-"" and
“It will not rain tomorrow,” then no matter what 1);133})(:115 this

forecast will be “busted.” v \

(4.02) Rule Ib: P (¥ and not-Y | X3, =20

The probability of ¥ and not-Y is cqua‘l’}b zero.

Finally we will want to insure that®all the numerical prob-

PR . - - & . .
abilities will lie l)ctxu(rcgg,\;,lg\,(f_gﬁ,r\'gl{&ﬁ%ﬂ};_g, g_rlllgugh., 'Ior this pur-
pose, to specify that the probability”is zero or positive; the rule
that it cannot be greater than™ene can then be derived,

(4.03) Ruhe,;rt;< P(¥|X) >0.

The probability gb N:, 7ero or greater than zero.

This first 1'ule‘{Of"manipulation, while useful in theoretical
manipulationsyis’unimportant in practical work. But now we
come to thetfo “bread-and-butier” rules of probability which
arc contifnlly used by the statistician.

Lc.t.\rfu? take a simple decision situation involving twa events.
1donk outside and notice that it is cloudy. Should 1 take my
rubbers? I really don’t mind getting my feet wet—the thing
that bothers e is the possibility that I will catch a cold if I
get my fect wet. Consequently T must deal with two events: ¥,
getting Jeet wet, and Z, catching cold. Assuming that 1 do not
take my Tubbers, how can I determine my chances of catching
cold?

To answer this guestion T must consider the compound cvent,
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¥ and 7, getting my feet wet and catching cold. For simnlicity let
me assiwme that if it rains I awill ot my feer wer, bt tha dhis
will not otherwise happen, Hence the probability that { will get
my feet wet is the same as the probability that it will viin, and
this probability might be determined by some predicting §Y§
tem X. This gives me some quantity P (Y | X},

There is another probability that Is of interest ltwve—the
probability that if T get my feet wet, 1 will catch a cold, This
1s & new kind ol probability and is called a conditionghNgyoba-
bility because it depends on the “if,” Preswmably 1h&e i some
predicting system that might enable me to (')lyg;-liii'i}"tllin condi-
tional probability. [.et this system be X/, 1 caan's’Irc P77 VY.X9
to represent the probability that 1 will catehcold #f T get my
fect wet, Notice that the vertical line is usdd as before ro stand
for the word “if” and that it applies y;{both terms alter it i.c.,
if I gevmy feet wet, and if 1 use preplieding system X,

The compound probability, that’Y will get my feet wet and 1
will catch cold. woutdhdbrad Ry OVaaind Z | X, X7) . This nota-
tion clearly distinguishes l&tween P (Z]Y,X" and P(Y and
Z | X,X" but unlortunately the Fnglish lallgl.lag‘c: 1s rather am-
biguous here. The Pg'rr}sse “the probability that I get my feet
wet and subscquently catch cold” might be used in cither case.

This particulafambiguity is a very dangerous one and has led
to scrious nfistakes on the part of research workers and, oc
casionally, experts.

The &Q;:\ee probabilities, P(Y | X}, P (Z | ¥, X"y, and P (¥ and
Z| XX’\') are dircctly related. Conscquently, if we know any
tweref them we can calculate the third. This relation is the

\?e,c?ncl rule for probabilitics and is called the mendtiplication
rule:

(+04) Rulell: P(ZandY|X,X") =P (£} Y,X)P(}' |}

It says that the probability of Z and Y is equal to the proba-
bility of 7 if ¥ occurs times the probability ol ¥. An alter-
native notation which 1 will now use is Lo write P(Z,¥) for
FP{Zand 1).
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If we think in terms of the frequency interpretation of proha-
bility then this rule is nearly obvious.

Number of cases whore ¥ occours

P{Yy = - ,
() I'otal number ol cases
Pz | Y) = I\umhcr of cases where Z occurs {Given ¥ ouuls)
o Number of cases where ¥ ocours
, Numboer of cases where both Z and Y ocour
P{ZYV) = < ‘ .

Total number of cascs \

If these ratios are substituted in equation {1.04) then 1{ 1\111
be noted that “tlre number of cases where Y occurs” qppe ars in
botli the numerator and denominator of the right- Ira,nd sicle of
cquation (4.04) and therelore can be cam,elle{} ont. When
this is done the righihand side and the lefwhatid side of the
equation are evidently the sanic. o \d

In order to use equarion {1.04) in Lh\a (,mhmu cold”
ample let us supposc that 22 (¥) == 0. ‘3 fhe] e is a fifty-hilty (,h'mce
that it will rain) and P ’Z L}lcpbl aui%j Wthere 15 one chance in (ive

r*alyo
that 1 will catch cold il my Ie.ef Eer W ct's Then by equation

(1.00) R
P(2,Y) :P(sziip(r) (0.2) (0.5) =0.10

so that there is one; chﬁme in ten that [ will catch cold from the
rain il I do not ¥ gar my rubbers,

The mlllllpk(.al,lon rule has a very important special case, the
casc of a'n.%pf%?dfmcf’. The event Z 18 independent of the event
Y if the gon litiona pmbahilitv of Z (if the first event is known
to ha\L ‘outcome Y) is jusi the same as the prebability of Z

wlten- the outcome of the first event 18 not known. If I flip a
p\m}- and a nickel, and I lcarn the outcome of the penny this
does not help me to predict the cutcome of the nickel. In fact
I [eel that the flip ol the penny has no effect at all on the flip
of the nickel, and the two events are therefore independent.

In terms of the shorthand I have said that

(4.05) P(Z|Y.X)=P(Z|X)

Q!
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and substituting this in equation (£.01) gives the muitiplica-
tion rulc for independent events.

(4.06) P(ZY XX =P (Z|X)P{¥IX)

For the tossing of two coins the standard predicting sistem
gives )

P(Z|X)=05 PF¥IX)=05 ~

so cquation (4.06) tells us that O\
PR N

P(ZY) = P(Z)P(¥) = (0.5)(0.5) = 0.25, \

' 4 ’:
< ™

and therc is onc chance in four that both coig@ntill come up
heads. ~"‘;.\\

It should be clearly understood that qu{uion (4.06) may only
be used if the events are independentIn the “catching cold”
example we would not expect thzttxD (Z| Y, X" =P {7 | X"),
that is, I would feel that the chances ot catching cold werc greater
if T get my feet wetrln domnd pRargraegeases P (Z | ¥,X") may be
near to one although P (Z ;{C’j"is near zero. The chance that a
given person will die in she'next minute will ordinarily be ncar
zero, but if there is the\additional information that the person
has just jumped fr&él the top of a sixteen-story building then the
conditional prqb?bility would be nearly onc.

An important use of conditional probabilities in a decision
problem “isj’&l"ré comparison of probabilities of events if diflerent
action\S\ér\e“taken. Thus I have assamed that if 1 do not wear
rubbes' the probability that it will rain is the same as the

) rabability that I will get my feet wet, If T do wear rubbers
(then I will not get my feet wet.

7 =

P (1 will get wet feet | it rains, I do not wear rabbers) == 1.
P (I will get wet feet | it rains, T do wear rubbers) = 0.

The probabilitics of various outcomes may he markedly in-
flucnced by the action that is taken (in this casc wearing Tub-
bers). The alteration of these conditional probabilities is really
the motive for taking action,
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The multiplication rule deals with compound events in
swhich the two events are joined by the word “and.” The next
rule, the addition rule, deals with compound cvents in which
the two events are joined by the word “or” {used In the sensc
of “andsor”}. I will omit the X’s for simplicity. The addition
rule is:

(1.07) Rule Il:  P(YorZ) =P(Y) =P (Z) —P{¥.Z)" O

The probability of ¥ or Z occurring is cqual to t.h.c\'l')\rc}ba-
bility of ¥ plus the probability of Z minus the prohability of
Y and Z. O

This rule can apswer such questions as: 1f [ cuf #well-shuffled
pack of cards, what is the probability that Kt an ace (Y) or
a spade (Z)? AN

The standard prediction system giyes\ts the probabilities on
the right-hand side of equation (-’1.0?’)1‘ Since there are 4 aces in
59 cards the probability of an acea® (Y}, is 4/52. Since there ave
15 spades and 52 cardsmwg,}%%ﬁﬂlig}c}ggragswde, P(7Z)y,15s13/52,

The probability that the.dard will be an ace and a spade can
be found from equatiof\(4.06) since these are independent
events (i.c.. if we kn,a*g{-'z\the suit of a card this tells us nothing
about whether it 1s§)ﬁ‘1u or not} :

P AE DX P@) = (1/52) (13/52) = 1/52.
<A

Henai"“\'.:’
O\ .
NP (Y or Zy =4/52 4 13/52 — 1/52 = 1652,
AN
\This same result may be found directly by counting the num-
\)cr of cards in the deck which arc aces or spades. There arc 13
spades and 4 aces but the ace of spades is counted in both cate-
gories; hence there are 16 cards which are aces or spadcs and
therefore P (Y or Zy = 16/52. This argument indicates why
P (Y Z) is subtracted.
The addition rule also has an important special case. When
P({Y,Z) =0 then the events are called mutually exclusive. On

N
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one single roll of dice, for example, any two points ave mutually
exclusive (Le., they cannot dofkh occur) . When

(4.08) PV =0

then equation {(1.07) simplifies the addition vule for mutnally
exclusive events:
(+.09) P(YorZy—=P(Y)+ P(Z). )

In Chapter 8 {page 51) Mr. B. calenlared the ('[1"3\1']}'&; of
getting one ol the points 5, 6, 7, 8, or 9 by adding upy e proba-
bilities in the standard table (page 50} . In L"i]\nw‘l s seep he
was using equation (4.09) . m\‘

There arc many other rules for mampuhuno prohabilities,
but they can be derived from the three ghat 1 have given. [n
other words il the rules are regurded a\i\i()lrls {like those in
geometry), many other rules can he d(‘duced (like geometrical
theorems). There arc a few qu.lhﬁtatmm that 1 would bave to
append to this statemnent fc 0T Jlltbfé)r lu)ld strictly, but T will not
bother you with thesc techm( BILt165,

Now that you have seed ¢ three basic rules I think rhal you
will agree with me th@d the symbolic structune ol prob hility
theory is, [undametﬁ\'}l ly, remarkably sim ply.

I would like LQ 1l1ustratc the derivation fit other rules by an
example of the ﬁroaess for the following 1

\’:\‘ P (IIOt-}) =1—-7r

]:"ugt shbstltute not-¥Y for 7 in Rule 11
a\ E’(} or not-Y) = P(¥) 4 P(not-¥)
3
ut by Rule Ia

clul vades

1o obitain

- P} and not-I').

P (Y ornot-¥) =
and by Rule Ib

P (Y and not-¥) =
so that substituting back in our first forn

L =P(¥) + P (not¥) —

1 we obrain
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and rearranging this result gives the rule we wished to prove.

I have a great tempiation at this point to vatile ofl a few
more denionstrarions, but I shall resist the urge. T would Iike to
cmphasize, however, that once vou overcome unpleasant as-
sociations acquired in high school you will find that mathe-
matics is a delightful game and also a very easy sport. At first
it looks loviidable because the rules are precisely stated ipy
symbolic language—but jt Is this precise formulation thhf
makes manipulation so simple, Matliemarticiaus are 31mph uc\h-
brow |and sometimes very high-powered| solitaire pla\ &3 Tt is
much more difficult to be a good farmer than a good giathematl-
cian because the [armer must deal with so many \{\IIL and com-
plex problems,

Probability Event Chains 5 *’.\\'

In many practical apphcations prediction involves chains of
events rather (than single cvents, Oi'[c'n ‘the probabilitics at each
link in the chain may h%«/@ﬁﬂ%é tﬁ(‘y]_)n ecr System. The rules
for manipuiation may then he tsed to ﬁnd other probabilities
associatec with the chain.

An example of such 'm\w nt chain is the decision Lo purchase
a bunch ol grapes dfr\xmmphno one of the grapes ol the bunch,
Although this is @n cveryday method of reaching a decision,
it contains the, basic ideas that have been developed into the
subjects of z"hisfjm:tion sumfling and quality control. Let us
examinclie)ogical process involved in this purchase of a bunch
of gTa}')pf\

Ifi.\‘._t;t,”'of all, note that the bunch itsell can be regarded as a

ample of the grapes on rhe fruit stand. The chain of cvents
stirts with the selection of one particular bunch of grapes as a
candidate for purchase. The next event in this chain is the
selection of a grape [vom this bunch. This grapc is tested by a
“taste-test.”” If the grape 1s good, the bunch is purchased; other-
wise the bunch 1s rejected.

The justificarion for this process 1s not a simple matter. Why
should the fact that the grape is good cause us to conclude that
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the bunch from which it is taken will be good? Past experience
plays a role in this logical process. Experience tells us that all
the grapes on a bunch are more or less at the same stage of ripe-
ness. The grapes on a single bunch have had more or icss the
same cnvironment so that they may be expected to be similar,
There 1s always the possibility that the grape chosen {or the
samplc is unrepresentative, but it 1s acknowledged (had, par-
chasing always involves some risks. The sampling is desizaeft to
reduce rather than eliminate the visk, N

If several bunches are sampled and all of the %111}4)1:: d crapes
are sour, the purchase of grapes is likely to be p@s‘rpmu d. Here
past experience has also entered—it is l\no\\n\[‘hal & consign-
ment of grapes tends to be fairly uniform.

The same general principles apply to {he purchase of a con-
signment of machine parts. If the nnml‘ia(*mi cr has his processes
in control nearly all ol the parts wif} Mave the right dimensions.
On the other hand, if the processes'g gel out of control there will
be a number of defeotidbpibrayiagtently, the quality of
consignments tends to be «€latively uniform within a consign-
ment. On the other hanﬂ, there will be quality dilferences be-
tween conugmnents. D

This phenomenbn is a common on¢ in the real world and
has been given.the name of the prmupfe of local homogenetty.
1 emphasize 1113:, point because it is somctimes believed that the
sampling.pt coss itself is the justilication for inferences from
sample\ This is not the case; the inlerence also depends on
pasb(.xpenence

{In’order to clarify the principles involved in prediction from

\s'cimples I want to set up a card game which will have an in-
terpretation in terms of purchasing decisions. The card model
is used hecause the probabilities can be readily determined by
the Randomization System, whereas in practical problems these
probabilities would have to be determined from actnal data.

In this game the cards in the deck have a delinite order (as
in the case of a new deck) and run in sequence fronm king
down to ace, The king of clubs is the top card and the suits are
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in scquence clubs, diamonds, hearts, and spadcs, so that the
bottom card is the ace of spades. I you have trouble visualizing
all this, try it out with a deck ol cards.

The deck may now be interpreted as 2 manufactaring
process: the black cards represent good machine parts while
the red cards will be considered to be defective parts. Thus
during the scquence of clubs the process is in control and 1s
turning out only good paris. After the ace ol clubs, the proceés\
goes out of control {turns out only bad parts) through diapdouds
and hearts and then goes back into control for the sequighce of
spades. The deck of cards is a mode! of an extreme, production
process which produces all good for a while and then all bad.

The deck is now cut repeatedly. This does"’l}}ot change the
order of the cards. The purpose of this repeated cutting of the
deck is to insure that the color of the tpjg}cﬁrd is unknown. A
shipment of three cards is taken off ahe top of the deck and
placed lace down on the table. Tl‘ic:.sé three cards correspond
to a shipment of parts or to tﬁegﬁih}(:h of grapes.

These thrce cardswa\'{"g'rﬁj%%}f rlal'i At one sample card is
picked at random. This c'ar‘d:fcpresents the sample of the ship-
ment which is to be insgected. On the basis of this card a deci-
sion is to be made gstto/whether or not to accept the shipment.

The symbols ingroduced in the last section will now be in-
terpreted in tqr\iﬁs” of this model:

X Ini?i;a"l kuowledge about the deck and rules of the game.

Y\ighliation in the three-card shipment.
Z\Situation in the onc-card sample,

*

Ih’r;i’speciﬁc outcomes will be indicated by a subscript on Y and
\Zf: The subscript will be a number—the number of red cards
(defectives) in the situation. Thus:

7, No red card in the sample
Z, Omne red card in the sample

There are four possible outcomes in the shipment {going
from no red cards to all red cards) so that in gencral we may use
the symbol Y, where L takes the values 0, 1, 2, and 3,
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¥ No reed card in shipament,

s One red curd i shipment

o Two red cards in shipment
¢ Three ved cards ju shipoment

The card model is a two-link chain. The fivse link zoes from
the deck to the drawing of the shipnient, "The second Tinlk goes
from the shipment to the drawing of the sample, Sinee ghe
situation X is common to all ol the probabilities, T will copskler
it as understood in the notation and will noc wrice it (’[{{'\.;‘!'l\t‘ZlL‘l'l
time. « M

The probabilides in the first link, such as P rj\}jif]"';‘nul Diyy,
are easily calculated. The repeated cuts on (i deck 1ender it
equally likely that any card may be at the gop 3l the deck when
the shipment is drawn. If any <lub between the kg and the
three (and inchiding the three) is l.ﬁ{.';'t.(}]) cardd in the piack
(after cutting) then all 3 cards in the x.*3hipmem will he black.
If any spade is cut this will alsoer true. Consequendy there is
a total of 11 plus 15 eor Sdragdiblasybangizhe shipment will be
black and ¥, will occur. Siwdtlarly if the rop card is any dinmond
or is a heart down to gi&vthree then the shipment will he all
defective (red). Therié%rc 24 cases where Y, will occur. I the
two ol hearts or tfedace of clubs is the top card then ¥, will
occur {2 cases}.iif the ace ol hearts or the two of clubs iy on
top then thertywill be one red card in the shipment and ¥, will
occur (2 cdses) . ITence:

(I’o},’: 24/52. P(Y,) = 2/52. P(Y,) = 2/52. P (Y,) = 24/32.

O

\m}”l"he probabilities for the next link are also easy (o calculate.
For example, if ¥, occurs then there are two red cards in the
shiptent. The probability that the sample is a red card if Y
occurs, P(Z, | ¥,), is therefore 2/3. These conditional probabil-
itics are listed in tabular form below.

Once the link probabilities are known it is possible to com-
bine these to obtain other probabilities which may be of inter-
est. For example, it may be important to determine the proba-
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Probability That the  Probability Thal the

Sample Is a Blach Sample Is a Red
If the Shipment Is: Card {Z.) Card (Z,)
Y, 1 0
¥, 2/8 1/3
¥, 1/3 2/3
Y. 0 1

bility of getting a red card in the sample rather than thes
conditional probabilities of getting a red card if the shipment
is known, It may happen that the composition of the sllipnﬁm\f
is not known and in this casc the conditional pmbabilir.igfsfsc\ould
not be used divectly. O3
To find P (Z,) a clever dodge is used. By Rule LKGi'.O4) :
(4.10) P (Z, Y or Y or ¥yor Yo = v
P(Y,or Y, oxdiyor ¥, Z P (7).

But P(¥Y,or Y,or Y,or ¥y ' 7)) = 1 by ap extension of Rule Ta
(.01} so that P (Z) can be found ky ¢valuating the left-hand
side of eq uation {4.10} WWW-dbl‘a:liljitJSfal‘y,org,in

This is not hard to do. The 'S represent mutnally exclusive
outcomes, 50, by an exrensisn of Rule ITT (4.09},

(D) (7Y, or ¥ dDY, or Yoy = PAZLY) FP(Z,T)
\ - p [."—{1!}’2)_'7‘10(21:}3)-

To avoid hawifgsio write out all the terms 10 the sum on the
right-hand sir,ltgzlét me introduce another symbol (the last new
symbol fox@whiley. All the terms in the suwm have the [orm
P(\Z],}'E._'_l.,?x\xlcre Eotakes on the valies 0.1, 2, and 3. S0 let me
i]'ltl'(}({l’.ﬁ;ﬂ' a symbol meaning “the sum ol terms where % takes
s@icaossive values,” The righthand side of equation (1.11) can
theén be written:

SP(Z,Y)  (k=0,1.273).

The nevw symbol is the Greek capital letter § which stands for
sum. Tt is one ol the handiest notational gadgets in mathematics.
If vou remember that this leteer, sigma, stands lor sum vou will
have no difficulty reading formulas which use this symbol.
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Combining equations (4.10), (1.11), and this new notlation

aives

(#.12) PZY=3P(Z,)Y,) k=012

One more step and the job is all finishied. Gaoing bk to
Rule IT {1.04} once more

PULLY) = P2 YO P (Y. Q
When this is substituted in equation (4.12) the \'(‘}'f\?i}"ii])(‘)l‘-
taut rule of reduction is obtained: O
@13 P =3PE TYPTY (92

. fs

&\ _
Note that P (Z,) is now expressed in terngof the link proba-
hilities that have alrcady been detelmm(*cL Consequently P (Z;)

can be calculated as follows: \~
P(Z 'Y P(Y) = ()(}4/’0 -0
P, YY)P(Y) = ¥2/591 = 27156
P(Z,| V) P( de'(a‘y f‘ﬂra@/ B 4/156
Pz, 1Y) P( V(L) (24/52) == T2 156
SP(Z, | Y)P (Yk}\' - 78156 = 1,2

I have dehbcrzﬁ&y chosen this cxample so that there i an
easy way to gei\Mb the same result. Notice that going through
the steps off dra“ ing the shipment and then picking the samplc
is equiy a{ent so far as the sample 1s concerned, to mnp v eul-
ting 1}%\ ¢ards. ‘The probability of cutting a ved card is 1 /2, the
same.lcsult as was obtained by using the link pr ohdlnlmu l his

»\15 tmlv an artificial example, of course. In most practical situa-
\ tions there is no short cut. and the rule of reduction is the only
method.

The rule of reduction can often be used to break down a com-
plex predicting problem into a number of separate links, Tlesc
individual link probabilities are generally easier to determine
than multi-link probabilities so that this is a useful procedure
in many fields of research.

‘The simple rule of reduction can be extended to chains hawv-
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jng many links, and the study of such complex probability event
chains is an important part of the theory of probability.

Baves Rule

The technicalities of the last section were presented in order
to set the stage for a concept basic to Statistical Decision and
action for samples: Dayes rule. The reader may have noticed
that so far we have been going forward along the event chainy(y
that is to say, we went from X to Y to Z. The probabilitiesise
tar discussed arc sometimes called “forward probabilitigfg’\l‘or
this reason. &’

But in order to use the resulis of a sample to makg decisions,
it is necessary to go in the other direction. In pacsce we know
what has happened in the sample (we know £} but we do not
know the nature of the shipment (Y} . Cpfj&f{u&ntly, we want
to go lrom Z to Y. Probabilities thatsgasbackwards along the
event chain are often called “irl\-'ersé:,lﬁfobabilities." There 1is
no essential difference between fotward and inverse probabil-
ities other than the (_lir‘é'&%%%{?}}ﬂ;&fﬁﬁ%%%m chain.

Suppose that it 13 knoxgn”tﬁat the sample is a black card.
What is desired is the prohdbility of the various ¥'s when tlis
additional infm‘n‘lati%gdé known. These probabilities may be
[ound very easily lixa application of Rule 11 {4.04).

Equation (}0\1), "g:'i\-'e:s:

\*'\“ P(2Y) =P{Z|Y)P(Y)
and .'\'\\”

O P(¥Y,Z) =P |2)F(7)

20 \ Y
Tt the probability of Z and ¥ is the same as the probability of
Y and Z, hence

PZITYPY) =P (Y |72} P (Zy.
Solving for P (Y | Z) gives Bayes rule:

(4.14) P Z) :5%___2)‘” ),
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All of the probabilities on the right hand side of 11 UXpres.
sion are known. Botl P (7 ¥y and P(Y) are link proisihilities,
The rule of veduction (—1.]3_} gives P (7).

For example: If (he sample cavd is black (7,5 then i |Proba-
bility that ali of the cards in the shipment are Ll Voroas

PY 7Y = Pz, | P Py _ L2 sey s
Tl %) === Pz, T (19 LN

Note that whereas the probability of ¥, hejore t'r«i‘}x;nnple
was taken, P{Y,), is only 2452 (e probability {';E';:F",, diter the
sample has been examined and the card was Towmel 1o Hoe black,
P(YolZ), is much higher. The additional iu\i'{irna:ltju|| has had
a great effect on the probabilitics.

The practical conscequence is this, I e shipmens are auto-
matically accepted, then half of thePares purchased will be
defective, If the shipments arc silipled and if e shipments
giving a had sample are rejecl:eg]z,ni:hen only a little less than
10 per cent of the parts )Lll'(j_]ﬁj?_’étfd will be defective, The use of
a sample to make \ffl\f\irwc'flc(.!ﬁs%(l;n 11%2;11'%211?1\ mproved the quality
ol the shipments that aré“purchased,

Note that the infosination in the sanmple is not enouah: this
gives only the qa.Qgt.ifi(rs like P(Z, | ¥)). It is also NCCUssary to
have addirionad, o perience or knon-'ledgc ol the production
process. This aedditional knowledge is used ro evaluate the quan-
tities like R(:}}“) m Bayes rule. If the deck of cards is thoroughly
5!mﬁier{~i~i}stead ol being ordered as in the model, the sampling
procedore will be ineffective. The rcader can verify this for him-
scL[f. Sume readers may also amuse themselves by constructing

M‘fai}l'élticu]s. of the game by Increasing the size of (he shipment or
by choosing a more realistic order for the cards so as to stimulate
a manufact.uring process which when out of control produces 20

Per cent or 50 per cent defectives rather than all delectives as in
the model T have uscd

I want to return now to Bayes rule itsclf, for it is a keystone
in the structure of Statistical Decision. Tt was first used by an
English clerg}-‘man, Thomas Bayes, in a baper that was puab-
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lished in 1763, Since it was published by friends after the death
of Baves, there have been some suggestions that Baves himsclt
was not convinced that the application he made of the rule
was proper. There is no theorem in mathematics that has had
a more controversial history.

Lei mie cnmphasize that this controversy has not questioned
the rule (111 itsell. The objections concern the quamtities\
like P¢Y,y which are sometimes called a priori pmhablli‘ties.
in problents in which these probabilities are imknown, (Bayes
rule canmot be used. Tlowever, many clever people, .iliaud'ing
Plerre Simon Laplace, refused to accept this limitaticn. They
wenl ahcad and put in arbitary values Jor the a fg'rim‘l proba-
bilities. Since these values were not obtained ¥ éXperience, the
name a priovi {i.e., prior to experience) RS used. Naturally
this led to contradictions when someong (}sc chose a different
arbitrary value to use. and the wholes Pracess lell into disrepute.

In the course of the long (ronLrQ.yéFﬁy. which became vielent
at times, the IJal'U‘“iP?{E,‘\E;‘;u,ta},QJéu 6-11.“1&"}.-' ?iofrl.di}{“-?ﬂ' extreme posi-
tions. The proponents of a pgiom pr‘()ﬁ;abﬁitics advanced justifi-
cations which bordered an the ridiculous. Their adversaries
sometimes retorted lhal‘.‘;jot only were these a priori probabil.
iaes absurd but, 1t 'Nj(f;, that quantities such as P (¥,) were
meaningless, i.e., gonld never be evaluated in any practical situ-
ation. 'T'hie posifan that the a priori probabilities are nicaning-
less in pracljoﬁl problems was upheld by R. AL Tisher, the great-
est Sl i’{ij\%ﬁ of all, and because ol Fisher's reputation, ac-
quil'c:(l.g{\\idt-sprcad currency. Some readers way have encoun-
Lerg‘.r{ftﬁis point of view in books on statistics.
mif"ﬁ(‘ development ol Statistical Decision has led to a hetter
uhiderstanding of Bayes rule. It was found that the methods
proposed by R. A. Fisher to replace Bayes rule also make as-
sumptions about the quantirics such as P{¥,} although these
assumiptions ave concealed in the theorerical developments)
This is also wrue lor the work of Nevman and Pearson. Tlence
the substitutes lor Baves rule actually represent special cases * of

1 This point will be discussed wore fully in Chapter 13,
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the rule, Consequently Baves rule has been restored to irs cen-
tral position in the theory of probability.

Summary

All methods of determining numerical probabilitics ace ulti-

mately based on the siraple Dircct System. There are. hawever,
other useful methods such as the Randomization h’-\su-m a
Advanced Systems. Once determined. the probubiliies, dre

manipulated (either numerically or algebraicallyy 4\ rules
which stem from three simple axioms, One d(n\(rLML\I Baves
rule, is singled out for discussion because of its ,m}m il role in
decision. The curious history of Bayes rule 1\{\ ﬂ\ related.

,"\\
4%
s("';‘\
AN
. i“}
N
W W, dbraul\}h{‘ary org.in
N\
, N
~O
&&}
R
:"‘:.‘""
Ko
\"'
\w
N
\
s,::*
~



CHAPTER 5

VALUES

N\

Values and Science \

~
7

in the two previous chapters the Prediction Sy:;;teﬁr Has been
discussed. Now 1 want to consider the sct:ond"’(\)\rh}mlwnt in
the decision-maker—the Value System. Like the Prediction
System, the Value System also assigns a nuifper to each possible
outcome but this sccond number meaS‘l?rL:;; the desirability of
the outcome rather than the (IhaIICE'tFl;’,l’L‘tl'lC outcome will occur,
We shall be concerned herc wighiValues only in this limited
sense. www_d%l{flj{j&br‘ary.or‘g.in

Fven in this restricted sen¥s, however, the problem of Values
is a very diflicult onc. Idselar as the Prediction System is con-
cerned there is sul sag‘m:’ial agrecment among experts on the
broad principles. Jurthermore, the theory of probability pro-
vides powcr!‘ul‘a;i};f(’\\-'ell-testcd tools for the construction of pre-
dicting systemis.in fairly simple situations. Fven then, as 1 have
emphasizedybefore, the actual job of constructing a predicting
system, {s Wio easy matter.

}A’\'ﬁﬁh we turn to the Value System the situation is much
Avarse. There is very little agreement among cxpers on general
pfocedurcs—in fact, there is not even agreement as to what con-
stitutes an expert in this ficld. There is no comparable theoret-
ical development or theory of desirabilities to assist in the actual
CONSITUCIION Process.

In the field ol Values the transition from words to numbers
has heen accomplished only in a very limited area. What little
research on the subject of Values is currently in progress is

85
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largely at the verbal stage. As is characteristic ol subjects in this
stage of development, there is a great tendeney o discussions
of Valuce to flounder around and finally dvown in a sea of plati-
tudes. While T shall try to avoid this tendency in my disussion,
I must confess that [ find it more diflicult to wrire this chapter
than any of the others.

Yet the statement of the problem of decision which T formge
lated eavlier makes it impossible for me o dodge the Gy s\.mn
of Value. I[, as I have insisted, the decision is to he basad® " the
conscquences of the possible actions, then these consp@uimaees
must be evaluated and hence a Value Systemn muat DE e orpo-
rated in the Decision-Maker. "’.\\

Actual decisions, of course, do involve a Yalie Svstem -ordi-
narily an intuitive one. We avoid actiony etause of the poten-
tially unpleasant conscquences; we ohn\\ traffic signals in ovder
to avoid accidents. Similarly we akher actions hecatne we
regard the conscaquences as gf_)q(jf,flt\-'é order 1ce crcam because
ol the anticipated 1)Lgr@&,1.1aﬁr§x;}ﬁ§}h}xy;bﬁ§iiﬂ expericnee when we
eat it. All of us have tlus intititve Value System which aliows
us to consider a given tuph of cvents as good, had, or indifferent.

Not only do we diftinguish good and bad bur further we
acknowledge degreesvof goodness and badness. In practice we
no more use thewo-point scale good or bad lor desivabilities
than we 115(—:,th:e\corre:;}')()luii1'1g two-point scale true or [alse for
probabiliyied As in the case of probabilities, there seeis 1o be
a contiptols scale for values. In verbal terms we indicate this
scale by such phrases as “very bad” or “extremely good.”

m\ dricus attempts have been madc to convert this intuitive
Sedle to a quantitative one. The Utilitarians, such as J. 8. Mill,
have discussed the pain-pleasure scale and have suggested that
numerical measurements would be nice to have. L'r;ﬂjn‘lln'lal,cl}f
most such discussions carry the suggestion only to this stage, and
no attempt is made to construct a procedure [or measurcment of
desirabilitics.

A majority ol scholars have insisted that Values cannot be
measurcd numerically. The only effective rebuttal to this argu-
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ment is to present a quantitative system which deals with
Vahies. Since 1o such system exists at present {except for very
special situations), the only answer that can be made is that
many of the quantities which we now regard as being me asured
fairly well were formerly considered to be npmeasurable. Just
a century ago it would have seemed absurd o claim that the
intclligence ol a person could be stated as a number. Today
numerical measures of intelligence are commnonplace and—
what is more important—are uscd to make practical dc:c@si'on‘s
in the employment of personnel. \,
Nevertheless, it is true that there has been almost nol wmmlﬁc
exploration of the field of Values and that w hat \’Etocrlcss has
heen made in the numerical measurement of J&sirabilities has
tuken place outside of the present boundarias wl scicnce, Why
is this the case? T'he subject of Values is, nha; mainly in the
hands of the speculative philosophers ; ”md‘rhev have posted big
“No Trespass” signs on this domain, H(fmuer this 18 not much
of an explanation because rhg scuﬂ&#;}s have been poaching on
3 osnpﬁers?or thiree hundred
vears, In some mses—ps\nholcw\* {for example—the battle over

the prescrves of the spem dthE"

property rights is stll going on.

Another reason for \\é{u(mme on the part of scientists to deal
with Valucs might ba that the subject is intrinsically subjective
and lable (o \mknl, and destructive controversies, Scicntists
who have dalybile 1 with sucl borderline ficlds as human sexual
umdurr )i &f\- sometimes found out in very painful fasiiions
that “sgidatific immunity” docs not apply in such subjects,
\\!ulexthn might [righten some investigators, there are other
smmlsts {contrary to popular opinionsj who are not pale,
tinid characters, and who are not unwilling to get intoc a no-
holds-barred battle with influential segments of the general
public. In fact, there are somc sclentists who will go out of their
way to get into a good rough-and-tmmble light.

T would attribute the absence ol scientific inquiry to a men-
tal attitude which has dominated sclence, an avitude largely
fostered and preserved by the Continental and British scientists
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and scientific philosophers. This viewpoint stems from pre-
scientific academic traditions plus the somewhat snoblisly prem-
ise that scientists are an intcllectual aristocracy.

I am referring to the often stated atritude that the role of
the scientist is that of Secker After Truth, This 1n itseif is not
too misleading a statement providing Truth is interpreced prag:
matically. What I dislike is the implicit Value Svstemn which
can be constructed from this interpretation of the role ol'd 50i-
entist. In this Value System there is an identiftcation Aeruth
and desirability—what is true is automarically clesi@hyte " what
is false is automatically undesirable-—and the furghé;]' exicnaion
that no other values are of any concern to a sciéptist.

It is this dogma that I believe is responsile for the remark-
able doctrine of Scientific Optimism: Sefnce autontatically
improves thic well-being of the people A particular doctring,
shaky {or some time, has now heen, Shattered altogether by the
atomic bomb. The destruction of Yhis vmwarranted docirine i
one of the more comstrdétmdiglingsugin the fission of urinium
has accomplished. It has Qsliéjnonstrated that the simplc Value
System which associategstrith and desirability, while usciul in
many scientific resegycbcs, is not an adequate value systeni evel
for Science. N\

I hope, therefose, that the long period of neglect of Values by
scientists is pgfaing to an end. Certainly the A-bomb has caused
even pl‘lyéﬁ\iétg (harried by parental responsibility) to take @
c]oser’\k(:)ok at values. Some lcaped at once to the wraditional
phﬂ’garsophical value systems, others searched this work but were

_disappointed because the traditional specialists i Values were
Ssull using the approach, even the outmoded tools, that Aristotle
had once applied to physics. Moreover, the traditional valuc sy
tems were in direct conflict with what little had becn learned by
anthropologists and sociologists.

But this is enough discussion of research that has noi bect
done—Ilet us now take a look at what has been accomplished in
the measurement of values. This will take us outside ol the
current boundaries of science and into the marketplace, the
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a vealm which [ am

world of business and everyday aflairs
alraid is distasteFul to academic scientists-philosophers. But ji 1s
the umscientific folks in the workaday world who have provided
the principal valuc scale currently available for usc in a decision
system. In short, let us get down to dollars and coents.

Dollars and Cents

/

Tlicre is a large clasy of events for which 1 would be willing
1o specify the desirabilities numerically, For example, I goyld
auote a number which would scem to be the appropriapedcsir-
ability for such events as recelving a new suiL or 1i1‘1c.,';}5’ a new
Chevrolet. The numerical value T would chr_u(_)sc’uj(}ulc'l be the
market value of the item. N

Because markel values are so much a. paré and parcel of our
everyday life, we may be inclined to ov;zlfk\)(_’;k the remarkable
features of thiy particular Value S}-'stcrﬁ*.“ln the first place it
assigns a numierical vaiue Lo a very {irfc range ol commaordities
and services. There is not much diteonunon between a new car
and a bushel of apples, Kﬁﬁlgﬁi‘f‘ﬁ]‘f?@“ﬂ%ﬁﬁﬂ on the sanice scale;
that is, in terms of dollars and cents. This in itsell is a note-
worthy accomplishment.{®

But cven more supising is the widespread acceptance of this
Value System by pedple in all conditions of lifc and various
backgrounds. BoMe sure there are some disagreements—one
person ma}"chnl: the market price of a cup of coffee is too high
and anotley™person might feel it is too low. These disagree-
11161'1ts,r§\:"a1 differences between the market values and indi-
\-'idl.@‘lfkﬂ-tltlﬁ systerns, but by and large there js rather good gen-
(ratagrecment that market values are the appropriate values.

\1 view of the diversity of backgrounds and tastes ol individuals

and the tendency lor differences in value systems (o produce
emotional teactions, this widespread acceprance of market
values gives us some hope that it is possible to construct other
value systems which will also be acceptable to a majority of the
people.

‘I'ie process which lcads to the numecrical market values
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seems to be a very complex one. Broadly speaking it vesembles
the parimutuel betting arangements which, T have already
mentioned, constitute a sort of consensus Predicting System,
Market values represent a consensus Value Systent exeept when
monopoly conditions exist. The monopoly may be sct up by the
sellers, the buycers, or sometimes by the government. When
prices arc fixed by a monopoly then the market value iyno
longer a real cousensus but instead is mercly the Valie ;'5“\_"8[811'1
of the monopoly. It is not surprising that the wholgSamrket
system tends to break down under monopaoly ('(.nlldigifqil'\m. A con-
flict of value systems may ensuc which may Teadgtoyhlack mar-
kets, complete disorganization, or even to Ll.]“(”\ﬁl'('}]]:l}})i(' of gov-
croments or cultures. \/

5o [ar I have been discussing market values of goods or com-
modities, but very carly in himan I{@a{fta}}-' It ecame necessary
to extend market values to moredhdbdtract quantities sucl as
labor and scrvices. The 1narket,}-'éhlc of labor or scrvices was
hxed in }')redndust‘\,}i‘guagg,gﬁllﬁ{j};ﬁquﬁgﬁw of individual bargain-
ing rather similar to the pragesses already wsed to fix the value
of goods. With the a('l\-'.(;:»m’{)f the Industrial Revolurion, how-
ever, the employer hadMo hire large numbers of workers. This
resulted in a mmngéo'l}-' on the part of the employers and the
individual workehy had to accept the Value System ol the em-
ployer. The perio"d of unrest and even violence continued nntil
counternmxfl’épblies on the part ol labor were formed. The
unions'&ggﬁi:ual]y became powerful enough o force a gcnuine
ba.rg;zrbﬁhg procedure and today the market value ol labor is
of:Lf{}‘lfﬂetcn'Ilincd through the agency of this collective bargain-
1mg” Values obtained in (his way are more ncarly consensuos
values and hence secm to he more widely acceptable.

Madern corporations have found it necessary to extend the
market valuc idea to quantities which are even more inta ngible
and complex than human labor. Thus it is not unusual for large
corporations to spend money on such abstractions as good will
or employee loyalty, An academic philosopher might very well
nsist that such values could not be translated into wwmbers. It



VALUES 91

is rather eurious that this translation of abstract values should
have heen attempted by people whose outlook Is completely
practical.

The extension of market values to abstract quantities em-
ployed methodologies alrcady devcloped for more prosaic
values. The techniques of cost accounting, time-and-notion
studies, and other commercially developed procedures have
been used in these attempts to assess, in dollars and cents, varie\
ous intangible quantities which have scemed relevant to busi
1SS Management, (™

Some readers, perhaps, may be appalled by the Lh«nfnrht of
rreating loyalty, good will, or human cflortasa maLLér f‘(n hook-
keeping. They may find that it goes against thcn\m ain to put
a price tag on such things. Other readers lTll“hT_ ‘disapprove of
such efforts because these intangibles do n@s in their opinion,
have any real monetary value. T confess, 50(11L sympathy Lor both
viespoints and I would not insist that® bucmse dollars and cents
seem to be an appropriate scale fup SJome events this scale neces-
sarily is the only one thit’ (?’B{aﬁlé REEL Y8 appropriate {or all
events, AN

Nevertheless T fecl that(the principles of cost analysis merit
more consideration hom}hc academic world than they have so
far reccived. The clcNﬁ?—and-cents scale, whatever its deheien-
cies, 15 the basis fdthe Value Systems which are used in many
ol the currenty aI}phcarmm ol Statistical Decision. This state of
aflairs may. th.muc when and if other useful scales are devel-
oped, buN believe the monelary scale will prove useful even
in suu m(ms outside of commerce and industry.

\Unhlv

Although the most useful quantitative Value System has come
from the world of cveryday affairs, the academic world has con-
sidered some theorctical Value Systerns which may some day
prove to be valuable. Since most of this work is in the province
of economics, psychology, and sociology, and since I know very
little about these fields, I will attempt to touch only on a few
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topics that seem to me to be relevant to the construction of a
Value System.

The contribution of the economists Hes in the coneention of
an alternative value scale o the dollarand-conts site—the
Utility scale (Utlity has a specialized meaning beve: 1 he proc-
ess ol constructing this scale iy similar to the process which
deterinines market values. The rescmblance Is not surprising
since the concept Utility grew out of attempts to expliin taket
values. However, the Utility scale Is an individual's val@tscale
rather than a consensuas. O ’

Suppose that T were interested in CX]’J]()TiIIU'AhC nfuilive
Value System of a child and I knew that the ¢hthdl Tiked gum-
drops. Tt T wished to determine the retative ¥ d’l\(_‘ of satne other
confection—chocolate kisses—TI might try s following experi-
ment, Fivst T offer the child a choiceéfra chiocolate Riss or 2
gumdrop. If he took the chocolate Jovould next offer o choice
between a kiss and two tmmdrqps J1e might again choose the
kiss. By increasing thewnatirdhabed: gamdrops a point would pre-
qumal)h be reaLlled at xx.luih the child might make cither
choice, a sort of balance pomt This point is generally calted the
indifference point sm\( the individual 18 indifferent as to
whether he is givd ffhe Kiss or the gumdrops. 1f 1 added still
more gumdropsae my offer the cluld might generally ke the
gumdrops. A& 5

If the indifference point were five gumdrops, then T might say
that a m\u as worth five gumdrops, or, in different wordy, the
L't::htx\of both offers was cqual. Other delicacies could be
me.asured on the gumdrop scale, so presumably T could ohtain
“a Tairly complete picture of the Value System ol the child in
this way. Let me hasten to add, however, that while such an ex-
periment is easy to visualize, it would be 2 good deal harder to
carry out. Any reader with some cxperience with children
would have no trouble poiming out reasons why the expcri-
ment might hreak down!

In principle, at lcast, this procedure could be extended to
study the intuitive Value System of any individual and to
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measure the Utility of goods or services on some single scale
{which might be gumdrops or dollars or something else) .

An mLIOspC(tl\e dp])]l(: ition of this pun(l[ﬂe s sometimes
he!pful in assigning de sirabilities to outcomes. Thus it T wished
o deterine some desirability [or the event “getting homc late
hecause of traflic delays or long waits for a bus™ (as inn the car
vs. bus example) , I might proc eed as follows. I would ask my-
soll whether Twvould be willing to pay a dinie to get home carly,
whether T would be willing to pay a quarter, cte. While th\e
numerical values obtained 1IlthSpC[‘L]\tl\ might not b Sy
precise, the principle does provide a proceduve \xheryln the
magnitude of the desirability can be determined. 3

The economists have been especially mterestcd\m the ques-
tion of the Utility of money itself. Although Hhs™ qm stion has
beent much debated for many ge nerarmns,,t{m first attempt o
conduct an actual experiment, one whigh 1\\0uld correspond o
the conceptual experiment described abm e, was done in 19301

The experiment is ducuc?s(d ]}}Z’MOSH 111(131 andd Nogee in a
paper in the Journal of Pm’mc{{ e ny.t 11 vou are at all
interested in the problem of Vahues, [ warmly recommend that
von read this paper. It 1{‘3 fascinating plece of intellectual
pl()ne('lln‘" 7\

The experimental }(J(ZC(]UTC used was too complicated to
describe here, hush/involved a group of students and another
eroup of natig }’1}13’ gnardsmen who were paid to gamnble! The
subjects wereldiven a series of offers (in which both proba-
hilities a\n\ "1)1\'0&9 were systeratically varied), and they had
the opuon of taking or rcfusing the bet. A dice game was ihen
uset[ 10 determine the outcome, and the game was P]d\(d for

“K eps '_the subjects kept the money which they won and
paid in the money which they lost.

From the inlormation on which offers were accepted and
which were refused. Utility curves were constructed for the dif-
Jerent subjects. 1f the Ulility of money were simply equal to

1 alosteller, ¥, aud Nogee, P “An expevimental wcasure of Udlity,” fournal
of Palilical Ecomomy, YVol. LI, No. 5, Qerober 1951,
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the armount of money, then the Utility curves should bave heen
straiglt lines such as the solid curve in Figure 5.01.
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Some indi\-'jd‘pzﬂs had curves which deviated [rom the straight
line in manie A and others in manner B. If a person had a
curve 1&;‘?\?@1‘1 resembled B it meant that he acted as though
money\ ‘h"td a diminishing Utility, In other words, a dollar has
sorm;m hat less than twenty times the Utility of a nickel. Glassic al
ﬂgmnomm theory would lead onc to expect this sort of curve of
decreasing Utility. It is interesting to note that the Harvard
students behaved in accordance with conventional theory while
the national guardsmen sometimes seemcd to act in just the
opposite manner.

Let me emphasize that Utility has so far been employed as 2
handy conceptual tool only. The process for the determination
of Utilitics as numbers needs much morce developrent,



YALUES 95

Preference

§1ill other value scales which are at least worth noticing have
heen suggested. The psychologists have done some work in in-
vestigating values and in constructing scales. The procedures
devised for measuring public opinion and individual atritudes
may turn out to be applicable to the construction of value
svstems. Unlortunately the psychologists have tended to foeys ™
their attention on verbal responses such as questionnaires, (hhe
procedures ihat have evolved for analysis of these \-’e{hal ‘Te-
sponses are a bit too complex, statistically and t)tl%elfz.}'ise, for
me to describe here. K7,

Recently there has been a vigorous effort de\-:ot}*.a to the con-
struction ol preference scales. The impetus {an this rescarch has
come mainly {rom the world ol busine@s,’,\éspc(:ially from cor-
potations in the food processing ficldy Fhe motive behind such
studies is quite different, however, Ifg}ni the motive behind the
surveys which have resulted in alurd advertising claims. 'The
purpose of r:onsumcrwf%’tv‘éf#Eﬁ%@@fﬁdﬁ%“lvas ro adjust the
product to the public rather™tiian, as in the advertising studics,
to adjust the public to the\product.

The general progiﬁ.o’f setiing up preference scales is fairly
straightforward. Ber example, a company may wisli Lo see what
the public likqs\’ii'rStrawherry ice creant. Do they like o have
large pieces plstrawberry? Do they want very crcamy mixtures?
Do they srefer dark pink or light pink color?

To af;\&\;{-:r such questions a number of different batches of
jce oxlam would be made up, some with plenty of strawherrics,
OTij@fs with extra cream, and so on. A pancl, or group of tasters,
x‘-ould then have to be carelully sclected. This panel would
taste the dilferent mixtures and indicate their preferences. This
latter step might be done in several ways. The individuals might
be given just two samples of ice cream at a time and told to
indicate which one they liked better. Or the judges might be
given more than two batches and told to rank the samples in
order from most desirable to least desivable. Still another
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method would be to give several samples and ask for nunerical
ratings on a one-to-Ave or one-to-ten scale,

There are numerous technical problems rhat arvise i this
process and there are various ways in which this exporimental
data may be analyzed. "The linal result s some sort of jycference
scales for the individuals on the panel and also sinzle con-
sensus scales. 1 want to emphasize that tastes ave vdher gne
tangible and that it is cncouraging that even arude quantitagive
measurcments have heen developed, These nmieasu 1‘v:m-m}\]1a\-'e
been used as a hasis for administrative decisions by }-;L{’f}c HEs Ot
porations. The current vogue [or taste and oth@ryfnelerence
testing seems to indicate that some mcasure of ggdcess has been
alttained in measuring taste. »

Relatively recently the academic world hashegun to pay more
attention to preference scales and val tz"s,}s'tcms in generil. An
imporLant step in this direction X\fag.tékel1 by Morgenstern and
von Ncumann® in their book T{r-;;?érj.' of Gumes and Feonomic
Belavior. In this boak,,t;,},l_gm@ungpé{k‘?[aigmhcmatica| expectaiion,
which will be discussed in Lh:c";’n.cxt chapter, was used o suggest
a process lor converting a ﬁr'eferencc scale to a Utility scale, In
this work the concepbl probability enters in a new role; es-
sentially il serves a\k"mathcmalical trick {i.c., to convert dis-
crete problems o continuous oncs). Mosteller and Nogee
utilized this de‘;"i{fé in their experiment on the imeasurentent of
Utility. /0

Th(rs; fé?:l’idc:nﬁc eflorts represent a start, at least, toward
built}i.p@‘up a theory of value systcms comparable to the theory
of:}_?qvédi(‘.ting systems. Un[ortunately, the work has heen dom-
irfated by what is called the axiomatic approach. In this ap-
proach the mathematician sits back in his easy chair and con-
jurcs up a number of statements which, from the armchair at
least, look like plausible descriptions of the real world. Natu-
rally the mathematician selccts statements whicli can be readily
formulated and manipulated mathematically.

T Morgenstern, 0., and von Neuwmant, J.. Theory of Cames and Ecnmamic
Behavior. Second Edition, Princeton University Press, Princeton, 1947,
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The rest of (he story Is all mathematical. The ¢nd resalis, or
rheorems. are somctimes interpreted 1n teruns ol" the real world
and naive people may rvegard these results as “proved,” L., as
holding in the real world, Whether the theorem is any zood de-
pends on whether the axioms that went into it are sound.
Daspite mathemarical window-dressing, therefore, results ob-
rained by the axiomatic method will be useful or not depending
om whether the mathematician who used the method had smne\
common sense or not. I have never cncountey ed any strong’ ygni-
denee to show that the pmpornon of mathematicians w |11\ eom-
mon sense s much higher than the proportion of non‘mathcma-
ticians with common sense. g

I do not want to disparage current cflores bv\fhc academic
world to investigate value systems ({though xvould wish for
firmer honds with the rcal world) and L am\tﬂd like to plesent
onc interesting result oblained in this x\\} by K. Axvow.’

Taste testing s an example ol cl, »situation in which the
preference sc ale may n\q%ﬂg"glln o Iabir;%mglf associated with each
alternative; instead a simplc s 1~aﬁk1ng e, ordering) of the
alternatives is obtained. Thhc has be(n a long-standing argu-
ment as to whether a ray Red {ordered) sca le is mote approj pri-
are lor a Value S“i? tlhan 2 numerical scale. This in turn
brings up the Inl!m 1o question: IF a number of individuals
make a raste Lot Snd rank their prelerences. can an over- -all
ranking ol Ln,, lke creams be made which will express the
preleven "\Ql' the group (in some sc nse) :

\110\%&( mipted ro answer the question as foflows: Supposc
t]mt &rmu aroup preference se Lieme is constructed. What char-
<I‘("t¢riat1u would one expect {rom the scheme? One such char-

tu]_am_ {axiony that Avvow paonosed was that 1f everyone in
thc: oroup preferred a particular e cream to all others, then
this ice cream should top the st ol the group preferences.
Another such condition was that if 4 new ice cream mix which
veas ranked at the bottom by everyone in the group were added,

8 Arrow, K. Social Cheive and Individue! Talues, John Wiler & Sons, Inc.,
New York, 1931,
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then the introduction of this additional alternative shiould not
affect the original ordering ol the group preference,

Starting with these axioms {ind one other) Arrow was led by
his mathematics to a very curions result. Te found thar the only
graup preference whicl sadslied his conditions was a dicratorial
one; Le., the only group prefcrence was, in fact. the particular
preferences of some one individual ol the gronp. Such o sroup
preference hardly seems to agree with our intuitive Ideas tiiat a
Valuc System should be somne sort of consensus. Fhis \\fmf?i ap-
pear to indicate that an ordered scale might be less Lmlul lor a
Value System than a continuous scale (ke dollaf S cents or
Utility}, and consequently we should bend 0\1* ‘efforts to the
construction of continuous scales.

I will only mention in passing that S(J.I.Q{ work is In progress
on the construction of spectal sca gs\zmd value svsloms for
specific applications. For example, Mivhe ficld of public health
it is desirable to cvaluate in somekghjcctive fashion the effective:
ness of public heal L‘Ti"ﬁ‘f(‘i]r]?f*iﬁl[@fﬁfytﬂ'e%%tro of communicable
discascs, home accidents, .ﬁrd so on. Scales hased on death or
illness rates or other indi€es are generally used instead of dollars-
and-ccnts scales. Mtl,uta\\ decisions are another special applica-
tion, but most of tf\\\ ork in this field is shrouded in scorecy.

Simple Val.ucs

I want, t(')\empl'lasi?e very strongly that the most important

barueL\Q 4 wider application of the principles and procedurcs
of Sr»a‘mrmal Decision lics in the [act that adequate value systerns
Qre\]ad\mo This 15 especially truc in the field of scientific re-
\gearch itself because the conscquences ol this vescarch arce hard
to pin down. This delicicney may be removed by time and re-
scarch on Value Systems, but In the meantime stop gap proces
dures are necessary.
In most scientific experimentation the divect end product of
a study is generally a publication, a paper that will be printed
in the scientilic journals, In this paper the scientist will gen-
erally state the conclusions which have followed from his labors
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and occasiomally these conclusions are stated in the form ok
recommendations which, presumabl}', will have some effect on
the actions of othct scientists. Fven when specific recommmenda-
tions are made, however, there 1s often no way o predict what
wse will be made of them—they may be lollowed or ignored.
Hence in scientific research the pattern which was sct up
carlier, recommendation-action-consequences, becomes rather
hopeless to elucidate. For practical purposes in serting up @\
Decision-Maker, it may be necessary to regard the process 2%
terminating with recommendation. R -

The methods of decision which involve tracing dowa e out-
come are therefore not very helpfal in most sciehtific work
except as a frame of Telerence. The question ;u’i@és;: Bow can
the concepts of Statistical Decision be applicd Wlittle is known
{at the time of decision) about what will happen when thie con-
clusions or recomiendations are published?

Note that [ am nof saying that (it Yecommendation-action-
consequence chain actually tCl’t':l}:II:Lfrlt?;'S with the recommenda-
tion, but only that wiathdpaulibaekeramnot be adequatcly
predicted at the time of d(:ciéij}ali. T'he chain goes on, of course,
in the scnse that other resCarch workers may read the paper and
be inspired to attempt {3 duplicarc the reported results and thus
confirm or irwalidglt\&\thc conclusions. Broadly speaking, if the
results are configméd, the prestige of the scientist is enhanced,
while if the x»’:c}rk is tossed out by a “jury of his peers,” the
scientist ypdy/dace a vather unpleasant sitnation. It is therefore
TIOL U, @iﬁg that scientists are often primarily concerned with
avoigﬁi‘lg this second cventuality—repudiation of the conclu-
si(j[ﬁ‘.'\\-"ith this attitude the scientist will not want to usc

\Méhniques, statistical or otherwise, which will lead him to
conclusions that will he contradicted by subsequent research.

Now this places the experimental scientist in something of a
dilemma. He knows that his oxperiments arc subject to what
is called experimental error and that while he may constantly
sirive to control or avoid these experimental crrors it 1s not
practically possible to climinate them altogether. As a result of
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such experimental errors he may he led to make sencmoents
which will subsequently be shown to he erroncons. 3ost CNPETL-
mental scientists realize this Lact. 'They also vealize that it is im-
possible to make useful statements or recommendations which
will always be upheld by [uture rescarch,

A way out of this dilemma has been sugeested by certain de-
velopments of modern statistics. "I'he scientist can e viven |30~
tection aguinst diawing erroneous conclusions, providing hevis
willing to state numerically liow much protection he wafiyand
also providing he does not 1nsist on complete protectiay. '

A widely accepted statistical “Insurance policy™N$ the one
which provides 95 per cent protection. This st‘t«)I"r.cr_']m[('iues is
designed to allow the scientist to draw concleOns (vou his data
which, in spite of the experimental (11‘1‘0}\1}1 this data, will be
right about 95 per cent of the tinie an '1:{;}\'1'01'15_1_‘ anly 3 per cent
of the time. To some readers acqualyfed with the Hollvwood
version of the white-coated and ’i.nl'ailil_lle medicine man, this
may seem to be "”‘“ﬁ?\%\'{}?&ﬁ%}.’ﬁl«imf{ﬁ&-é:ﬂ{ ervor. However, os
pecially in the biological scigiiees, a batting average of 930 is
regarded as suflicient progection in most vesearch.

In some appIicaLim}sSo[ course, in which the consequences
are mote obvious (dg@nsituacions in which an erroncons recoms-
mendation mightdead to injury or death of humans) a greater
degree of pl‘()pgﬁ(iién may be required.

Althouglyshis point is not abvious, these widely used statisti-
cal “Insur@nce policies” are based on a specific valuc scale. Since
this scdlehas only two points {zevo and one) it is called a
.sir?g.g{r’faz’;scale. The associated Value System is essentially one
ii?h;icfl makes the identification, which I discussed earlier in rhe
Ehapter, between desirability and wruth {or confrrmation). To
put the statement in terms of costs 1 might say that we agrec to
say that it costs us onc unit to make a statement which is coi-
troverted by subsequent research, while it costs us nothing to
make a statenient which is later confirmed.

This Simple Value System is quite uscful in applications in
which the detailed tracing of consequences s impractical, The
usc of this simple scale essentially eliminates values from the
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problem and reduces the Decision-Maker to a Predicting Sys-
rem and a Criterion. The statistical procedures developud be-
fore the advent of Statistical Decision may be vegarded as special
cases of Stalistical Decision in which a simple value scale is
used. Tooking ar it the other way Statistical Decision can be
considered as generalizing the carlier statistical mncthods so as to
bring directly into the structure the informarion that may be
availablc concerning costs and consequences. O

Now it 1s not difficult to find objections to this simple, §tale
which veally assimes that all wrong statements are just(ay had.
Actually, of coursc, in terms of academic promotions m ])I estige
some wrong statemenis may be inconsequential 'md in other
cases a single wrong statement (Or sOmMetines.ay m}*hr onel may
be disastrous, The medical field pro\ldc Jay cxamples in
which degrees of wrongness are apparentZhi“a child is ervone-
ously dmonosul as undernourished, (het }henpx {i.e., [ood) 1
not likely o do much harm. On the th hand, an muznrettly
diagnosed eyc (_Oﬂdltl()ll io1 whichbhe therapy is removal of
the eye is a more seriols 1A lé%‘td‘brary Ore

Nevertheless when the gpflsequenccs are obscure or difficult
to evaluate, as they \?c’r\fQ)i'Leli arc 1n pmrti('a] research situa-
tons, the Simple Va ur\&watem seems (0 be a uselul first approxi-
mation. Wheneve, r_h consequences are more obvious and can
be evaluated, th e\’iinﬁadet structure of Statistical Decision can be
put Lo usc. ,\

O

Sum:m{\‘-’

A nnm ohstacle to the wider application of Statistical De-

um is the lack of adequate Valuce Systems, The study of such
Varlue Systerms has been largely ucOIected by the academic
world and the main development of uselul systems has come
from the world of cormmerce and industry, systems based on
dollars and cents. Some academic contributions, Utility and
prefevence scales, are noted. A stop-gap procedure that can he
wsed when more realistic Value Systems are not available 15 the
Simple Value Systam which identifies desirability and truth
and which has been uselul in scientific research situations.



CHAPTER 6

RULES FOR ACTION .

Calculated Risks s

In looking for rules for action it is well hl’?}(.‘?lli/.(_‘. at the very
beginning that no rules can he constructerd which wiil lead to
the most favorable results in every ca$éy Since both jreadiction
systems aud value systems are in‘1pe;‘~f§:,€t_. 1t follows thaut the rules
for actions which spring t‘l‘mn’t.lf@s’e systems must likewise be
nnpel:fect. v dbra lilgj'éljy,or in ‘

It is true that Mot augﬁjors who have laid down rules for
action have not taken DTS view, that they regard actions as
right or wrong in an absolute sense. This authorirtarian atticude
is popular with politidians, moralists, and editorial writers but
the long, sad history of failures of the infallible has led to wide-
spread ske[)tic\is;n"in our times, People with (he courage Lo look
at the wor :zl‘}Jbut them as it is, rather than as they would like
it to be, Ve realized that all action is attended by risk.

Mgrg ind morce one hears the phrase calculated risk in con-
nection with decisions, especially at the international level.

AlBen this is used to justify a choice of action it nnplics that
he favored action is ot guaranteed to lead to a desired end, but
rather that it scems more likely to do so than the alierpative
actions. Moreover the word “calculated” implies that this con-
clusion is reached by a deliberate analysis of the situation and
historical precedents.

This attitude of calculated risk underlics Statistical Decision.
However, Statistical Decision carries this vicwpoint once stage

102
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further and translates the uncertainties and values into num-
bers rather than words, Flence in Statistical Decision the risks
are, quite literally, calculated.

The preceding chapters have discussed the quantification of
valuecs and uncertainties and the determination of desirabilitics
and probabilitics. When this has been done we have a list of
possible actions, a list of possible outcomnes for eacl aciion, the
numerical consequences of each outcome, the probability as:
sociated with cach outcome, and the costs assoctated with’ {C"E@h
line of action. What is necded now is some way of pugping all
of these numbers together in such a way that Lhe"g!ﬁ’)ice of
action can he determined. T have previously g;{i{(:fi’such a
vule a criferion for decision. N

This rule should reflcct the purposes of thidNhdividual who
is making the decision. 'I'here are two t}-‘p&;&hﬂ’ decision criteria
which are in widespread use at presemts but theve are other
possible rules for actions which may(b& useful in the future
The criteria lor decision have .H?ét yet been thoroughly cx-
plored. www,dbr:c}n’xl:f,brary org.in

~ 3

74\

Some Possible Rules {

The various po.\ss@é' rules for action may be most easily
understood in teruls, of a specific example, so let me go back to
the decision sigu:{iiﬂn in which I want to choose between driving
my car or taking the bus. In order to have a simple example
et me n'n\k}‘ihe patently unrcalistic assumption that there are
only @hﬁhitcd number of outcomes possible. I will choose the
}')1‘0}_);H_ﬁ'!iti(r5 and desirabilitics more or less arbitrarily so that
GOVl have some specilic numbers to play with. Supposc that
the relevant information in the car vs. bus problem 1s sum-
marized in the table on the following page.

The desirabilities in this table are in terms of dollars and
cents and the minus signs are to remind us that these are costs.

18avage, J., “The theors of Statistical Decision,” Journal American Statistical
Association, Vol. 46, No. 238, March 1951,
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ACTION DRIVE (AR TAKL LS
Cast of - o
— ] — 41 30l
Artion 0.75
Ouicomes | Arrive home| Arrive home| Aecident) Arrive hooe Sarive home
early and late due carlv and i lawe dlue tg
without traflic [\\uhc:m missecl
incident delays e CNTMEORE
2
N
Probability y v
of Ouccombi 0.850 0.145 | 0.003 0.100 N o0
" 3 {.' -
Desirability | N\
af Oulcome ‘ (.00 —1.00 —30.00 \Q.UD P — L
"\\ o/ ! e ]

2%

N\,
Thus, for example, the table indjeates that I [eel that the

fime and trouble involved in gemntr ‘home late ave cquivalent
1o a cost of one clolhmwuubrymﬂ-bgyufg mre condifional proba-
bilities and represent the pre nba'fnllt\ of the outcome /f a given
action 1s taken. This is (»\ﬁclc,nt since the probabilivies for cach
set of cutcomes add up(e one.

Now how can Lh‘s\\nhmrldtlon in the above table be com-
bined and manipilatcd in such a way as to lead to a decision?
I shall list [omSpossible answers to this question. -but many
others are passible.

A usu..'@\:ia' Consider the most probable outcome for cach ac-
tion ﬁrhe outcome which has the largest probability) and the
d(bl‘ﬁlbl!ltlf_“; associated with these most probable outcomes.

heo%c the action for which the desirability of the most prob-
able outcome is as large as possible.

For the car vs. bus exarnple this leads to:

Take bus

Arfion: Drive car

Maost Probable
rideome:

Desivebility:

Choice:

Arrive home late
—1.30

Arrive home early
—0.7h
Drive car
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The numerical values of the above desirabilities are obtained
by adding the cost of the action to the desirability ol the out-
COOe:

0.00 + (—0.75) = —0.95
—1.00 + {(—0.30) = —1.30.

“The reasoning which underlies this answer 1s the following.
Since the most probable outcome s most Iikely to occur, we
hould act as il it will occur, ‘Then we simply wmp’ue 'rh(V
desivabilities of these most probable outcomes in 01ckr to
make our choice. N

Answer 1 emphasizes the probabilies. It ‘;\ould\ke possible
to use this procedurce even if the desirabilities wekedimperiectly
kuowi. Tt is unnecessary to know the c1651r1hk3~t1cs of any out-
comes other than the most probable ourtqnes Moreover, it is
not necessary to have numctical values fark, the desirabilities, but
only a ranking of the desuabllmes 01 the most probable out-
COTES. WO, dbraullbrary org.in

TWhen one outcome has a very hwh pmbablhn {i.c., is almost
certain to happen) this sopt of rule lor action is often uscd.
Thus if it is very thrtatqnincr weather T act as if it were going
to rain although it 18 ]Sq‘ssll)le that it will clear up without rain.

Instcad of concenftating on the probabilities, the rule for ac-
tion may focus on\tht desirabilitics. Just how this is to be done
depends on wl\eﬂler a pessimistic or an optimistic viewpoint
is pr (’\llﬂl;@

Ansugt™?. (Optimistic.) Choose the action which conld lead
Lo ;I\u.\gn’ost _fa\-ordble outcome.

h
S}cj{mﬂ.: Dirive car Take bus
Maosi Favorable Outeome;  Arrive home early Arrive home carly
Desitralility: —0.75 —0.30
Choice: Take bus

On the other hand if this Pollyanna attitude scems unsuit-
able, the opposite point ol view also provides an answer.
Answer 3. (Pessimistic.) Consider the leas! favorable out-
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come possible for each action, Of this set of least favorible out-
comes one will be more favorable than others. Take the action
associated with this outcome.

Aection: Dirive car Take bus

Least Favorable Guicome: Accident Arrive home late
Desirability: —a.75 —1.30

Choice: Tuke bus

Q
The reasoning behind this viewpoint emphasizes secdupity.
Thus in following this rule wo are protected agair’nst:\he’ 0c-
currence ol extremely unfavorable events (such as atgccldent).
The control of heavy losscs is the essential l;kuzf'posc of this
rule, and I will refer to rules of this type as lofs-tontrol criieria.
Notice that Answers 2 and 8 do not reqbire the evaliation
of the probabilities. Answers 2 and 3 se @10 be used in practi-
cal decisions. The purchascrs of nptnbers tickets seem1 to be
thinking along the lines of Answgr 2. They arc not concerned
with probabilitics awdmadbrgniijfgfg@g@;ﬁd in the fact that if
they win they will get a lag ol money. On the other hand all
of us have acquaintance.j\-‘itﬁ confirmed pessimists who always
act as though the Vel;y"'v.}orst eventuality is surc to marerialize.
Many pcople neverlearn to drive because they arc afraid of
having an accidehty
Now lel usttr to an answer which will utilize both proba-
hilities an@l}f&sirabili_tics in the pracess of decision. 1n this
answe'r;%c" have to shilt our focas of attention from what will
happey* in a specific situation (i.e., tomorraw) to what will
}kﬁi};én in a long-run sense. Ordinarily T wouldn’t want Lo make
Saseparate decision cach day as to whether or not 1 will drive
or take the bus, If T make my decision to drive, I might very
well continue to drive to work every day lor the rest of the
year. Consequently T might ask: What will happen il the choice
is presumed to guide my action over a period of time?
Suppose, {or convenicnee, 1 ask: What will happen in the
next thousand days? If I drive during this time I can expect
the lollowing balance sheet:
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Ouicone Expected Occur- Gost per Occurrence Cnst of Out-
rences (Days) {(Dollays per day] come (Dollars)
Arrive linme
catly 850 days $ 055 5 637.50
Arrive Liome
late 14 days 1495 258.75
Accident 3 davs 50.75 255,73
All 1000 davs $1145.00

In ¢xactly the same way a balance sheet can be prepared FOr

the case in which the bus is taken. £\
N/
Ouicanre Expected Occur-  Cost per Occurrence Qgﬁf”r’)‘;‘ Oui-
rences {Days) (Dollars per doy) mee (Dotlars)

Arrive hone ‘

early 100 $0.30 g 30.00
Arrive home :'\\"‘

Late 000 130 & & 1170.00
All 1000 P \% $1200.00

When the balance sheets aye & Wiipared it is scen that the
.. . W, ‘&tf?lbr.lal OFRg.1 e
decision 1s a very close onc. 1\0ere 1s dfflt advantage if I
drive, but there would be,.a question as 10 whether this dif-
ference really meant mych™Tn other words, we know that the
probabilitics and de ifa Jlities are measurements and as such
arc subject 1o erroph, Perhaps inaccuracies in our measurement
system could acéonnt for this very small difference that we
have found Lljt\:tﬁe balances. In any case 1 would not go very
far wrong_'lm{‘i:;}iér by driving or by t..aking the ]_)I_IIS. .

It 111}@]% therefore be worthwhile to experiment with hoth
mcth&dﬁ' of transportation In the hope that in this way addi-
{ona? information could be obtained which could be used to
make a inal decision later.

Now there was no very good reason for choosing 1000 days
{except that it simplified the arithmetic), and T wmight have
picked any other number. To make these different results com-
parable T could put all my results on a per-day basis, and in this
way my answer would not depend on the choice ol the numbcer
of days. T'his is easily accomplished by dividing my balances by
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1000 so as to obtain a figure of $1.1414 as the por-day cost of
driving and $1.20 as the per-day cost ol taking the b,

These results could be obtained more casily by the Totlowing
rle: Multiply the probabulity ol cach owtcome by the corre
sponding desirability and add up these products tor all the
outcomes. Then subtract the cost of the action.

In this casc the application of the rule to the cdriving sipa-
tion gives:

O\
(0.850) (0.00) + (0.1450) (—1.00) 4 (0.003) (- RTINS
: ake 1,145

Here I have carried along the minus sienglfe denate costs.
I did not do this on the balance sheets heeatde the cntrics were
labeled “costs.” The word “cost” impliesadicgative dosirability,

Tlhe rule that is given above le;u‘ls’.t;@ﬁ‘ quantity that is called
the mathematica! expectation. This concept has been n~cful in
the theory of probability lor .Lhi'w.(; centurics. The mse ol this
concept of mathenti¥izAPEiBerr ongénables us o frmulate
a fouwrth answer to our origihal question.

Answer 4. Choose t.]{e" »ourse of action which has the Jargest
mathematical expg (@gion.

Rules based on this principle ol maximum cxpectitinn play
a very impolrrai‘rf role in Statistical Decision and will be dis-
cussed 1Tlgt;{ﬁlully in subsequent chapters.

Ofterra’decision must he made in the absence of reliable in-
forn;&'a'tit n about thc prohabilitics. This has led to another
mléj"for action which combines the concepts of loss control

“NAnswer 3) with mathcmatical expectation.

Let us suppose that the probabilitics which have heen given
for the car vs. bus problem are not given as numbers but s
ranges. For example, suppose that the probabitity ol having an
accident if T drive my car is not given as 0.005 bur as a Tange:
0.003 to 0.007. This says that all [ can say about the 1;\'(‘J}ml.)i1it§"
ol an accident is that it is somewhere between three hances i0
2 thousand and seven clhiances in a thousand. T his sort ol stateé
ment might be more descriptive of my state ol knowledsge cot
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cerning this probability. Tn the same way the other probabilities
involved might be given as ranges:
& [

ACTEION OUTHOME PROWABILITY [RANGE)

Lirive Car Arrive home carly without incident 080 -0.90
Acrive home late becanse of trafBe (.10 —0.20
Accident 0.003-0.007

Tk Dus Arrive home early without incident 0.03 015, «\\\'
Arrive home late because of con- N\ *
neetions (.85 - 0395w

i T

In this case I might want to usc the following ;u}'(:"for ACTiON:

Ansieer 5. Select the action associated with tieMargest of the
least favorable expectations. 0,1\\3

‘I'his vale is casily applied as followsy Evidently the lcast
favorable situation in driving is o have the probability of an
accident as high as it can be {OJ?G?) and the probability of
getting home early as sﬁl\ﬁﬁ'dﬁ\”?}guﬂﬁq{y%g-{ﬂ.%) . Since the
probabilities must add up to ont the corresponding probability
of arriving home late ust he 0.193. The expectarion for
driving may be cala(@ed as before, using these least favorable
probabilities. Thighgives:

(0.800y (0.00:2(0.193) (—1.00) - (0.007) (—50.00) —0.75

o = —1.203,
:"\’Q.

Sirrli_laﬂ\y“for the case in which 1 take the bus, the lcast favor-
al:;lg;ﬁffnbabilities are going to be 0.0% for getting home carly
amd\.05 for getting home late. This Jeads to an expectation as-
Eci'al‘ed with taking the bus of:

(0.05) (0.00) + (0.93) (—1.00) —0.30 = —-1.25.

A comparison of these two least favorable expectations,
—1.299 and —1.25, indicates that by the principles of Answer 5
the decision still seems to be a clase one, but this time there is
a slight edge in favor of taking the bus.
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Five answers have been presented 1o the ovisinal question
and a number ol others could be added. Atv this paint our
troublc 1s not that we cannot answer the question but that there
arc too many answers!

Selection of Rulcs

Some sort of chotee of criteria for action must he madesin
order o set up a Decision-Maker. The last section v e s’ of
the imporwant alternative rules which have been pm?;{)‘?ea and
I will confine the discussion to making a sclectips irom the
five answers given In that section. It will be nmm that two
of the rules advised me to drive my car and L{p\u of the ruales
advised me to take the bus, so unless I €ah’decide on some
one rule of action to follow, [ will besgo closer to making
a decision than 1 was at the hcumnmt‘rz This brings up the
question: What are the criteria lor'.sc]r.-,ctlng the rules which
will be used to make clecmnns? o

I have already noted that Lh,( \armus rules for action reflect
various attitudes LH"‘{“?“HPJELIHII)‘?WL £ tHward the veal world—
optimism, pessimism, agel the like. So presumably we should
select the rule which icr}itles‘ closest to expressing the outlook of
the customer, the }‘x:Fson who has come lor advice on decision
While this procdlure is plausible, it is not very practical. The
statistician “ou]d have to find some device for mcasuring the
customer’s ¢ 'Bfncril outlook on life. Things are complicated
enoucnll\uth pl’(’(lli_[ln"' systems and value SYSLENs without
havi III‘J' to take this [urther step—althougl it may come about
somedav

JFor the time being it will be simpler to concentrare on rules
that might be acceptable to most of the customers. We might
also consider a sclection ol criteria for decision which meet vari-
OLs mtmtlveh sensible requirements. ‘o suggest just one such
requirement: The rule for action should take into considera-
tion all of the relevant inmformation pertaining to a givent
decision. This requirement would toss out Answers [, 2, and
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3 hecause these rules disregard the desirabilitics or proba-
ilities.

Te be perfectly frank, however, T don’t feel that our knowl-
edge of Statistical Decision has veached a stage where it is pos-
sible o select any specific rule for action and say “This 1s the
rule.” Indeed, it is doubtful whether a single rule can he found
which will have universal application. As T have indicated, AR\
svers 4 and B secm to he the most promising of the current grop.
but it is too early, and we have too little experience on ;h\'e\sl}b—
ject, to make any final selections. A

Nevertheless, it scems worthwhile to discuss in~f115i‘e detail
the motivation hehind Answers 4 and 3, to try’l;(.ﬁ\éliscover how
these Lwo diffcrent criteria have arisen. Tile$€ two answers
can b regarded as covering two diffepene” sicuations which
might be exemplified by the fO]IO\’\:iligz'tI\'O extreme  Cases.
Case I is a situation in which great 10s%¢s or gains are possible
and in which the situation is unigug in the sense that it is likely
to eccur once and only onceln the lifetime of a given in-

o . e ﬁgﬁi'auliin Fary Org. k0 - o
dividual, A prospective T_)r1(YetDrToom deals Wi this sort of situa-
tion when he is trying g6 make np his mind whether or not
to marry the girl. Pelaps T ought to specify that this bride-
groom is not a moyi}_\ gar.

Case II is a déeision problem in which moderate losses or
gains are possiﬁle and in which there is a large mumber ot
similar degisiéns over a period of time. Purchasing a batch of
raw llla\kQ\lfiiS for a factory would be an instance of this routine
d(tcisjjc;’m.
o«}ﬁ\Case 11 common business practicc is to focus attention on
e long-run prolits. The decision to purchase a batch ol raw
materials will, of course, lead to some profit or loss on the deal,
hut ordinarily the factory would not be wiped out even il a
sevics of unfavorable purchases were made. Consequently man-
agement tends to think in terms of an amual profit-and-loss
statement varher than concentrating on the ourcome of a
particular transaction. The annual prolit-and-loss statement 15
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closely rclated to the concept of mathematical ¢nectation
which is also a longrun balance. Tlence tie cvierin which
maximize the mathematical expectation covrespond o the
efforts ol the businessman to show as large a profic on lis annual
statement as is possible. Answer 4 becones vers new b translas
tion ol the dictum, “Choose tie action with the mosi desirable
consequences,” rthe only qualilication being thar “iose dein
able” is to be interpreted in a long-run sense. O\

Therelore, Answer 4 scems quire appropriare to Cage k" hen
the probabilities and desivabilitics can he adequatgly iMeasured,
In gencral both a Prediction Systan and a Vbl Svstem are
easicr to st up when a series of similar r.r:m:agu&i?ms are known
from past experience. OF course, if this infdation is lacking
then other criteria may be pressad jl!}ﬁ" service as slopgap
measurcs, ~N\

When we turn to Case 1, Iw“'ev(’p;rhxe whale idea of long-ran
consequences may hreak down, @bhsider now a small business
with 510,000 Capit\i’;%Wﬂﬂ§a4}k§i@§;‘*.ﬁﬁ~ﬁfh has the clhioice of two
deals, both of which will require the investment of ihe entire
capital. Deal A oflers a ghince to double this capital. huritis a
risky deal and there {9 bue chance in five that not only will
there be no profig but further that the original $10.000 will be
lost. The mathgma'tical expectation ol deal A is:

E, 95y (310,000 4 (1) (—$10,000) — S6000.
7\

Thegsecond deal is a much saler one. The capital is secired
and astore modest 10 per cent profit is assuved. The mathemati-
cal &xpectation is:

h

E, = (1) ($1000} = $1000.

The application of Answer 4 leads to the decision: Take
deal A. Moreover, ihe expectation of deal A is six times the
expectation of deal B so there is a wide margin in favor of
deal A. This advice, however, might he a little hard for the
small husinessman to swallow, What i the dilliculty?

As 1 see it the difhculty lies in the fact (hat the small busi-
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nessman is not exclusively concerned with making a profit—
he also wants to stay in business. He cannot focus his artention
on long-run results—if he is not carelul there will be no long-
run fov him. Consequently, he would want a criterion which
would not only provide some profit but which would also oIV
some zuarantee of shortrun sccurity. This is (he motivation
for rules which concentrate on what will happen it worse
comes 1o worse—the loss-control criteria.

It would seem somewhat dangerous to go to the other €y
treme, Liowever, and concentrate entively on security (fihce
this may be self-defeating. Although survival, 1n l’JlJ:Q*i'fi‘.GéS or
everyelay life, is a prime consideration the choice is nghhetveen
taking chances and not taking any chances; s<_1r11€"’;\hances will
have o be taken. Successlul businessmen are 1ot noted for an
extremely pessimistic outlook {which 1s piiplied 1 the more
extreme  loss-control rules for actiomdC)If anyone adhered
strictdy 1o Answer 3 he would soon starve to death, Tle would
never be able to take any other acEj{in than staying in bed with
the covers putled over his\fﬁéﬁ&?ﬁ?‘hbmry'org'm

Some compromise betwegn “profit and security is necessary.
Such a rule is the dicr.um,,,f@ﬁnimixc the maxamun risk,” which
is an extension of A sx(sfc.':i‘t 5. This rule has heen the criterion
nsed in much of thévrescarch on Statistical Deciston. For quite
a while this rule@ot action provoked little objection, at least
from the mar,.héniaticians. 1ts use facilitates mathematical an-
alysis so th4t) it was not only plausible but also convenicnt.
A 1‘(?&1(‘ti¢){'§{as set in quite recently, however, and still more
elabgr@}_é' compromises have been proposed whichh attempt to
cfiityn] the losses and then maximiz¢ the expectation insolar
a%osxihlc under this added restriction.

Still another approach 1s to try to deal with Case I by using
maximun expectation, Answer 4, but moditying the expecta-
tion a bit. One way to do this is to argue that the difficulty ariscs
from an inadequate analysis of the rclevant values in the
problem. If survival has some value, thien this value should
appear in the mathematical expectaticn In other words, a term
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should be added which would be the product of the value of
survival times the probability of nonsarvival.

A method which docs not involve additional tevms i the
expectation and which has some historical developrient is a
shift from valuces measured in monctary units Lo svalues meas
ured on the Utility scale described in the previous chaprer, Un-

Utiliry \
{Utiles) t:\t\.
115,000 'S\
< N/
N
110,000 s,
s W
- N
s v/
150004 —
Loss Pty N
{Dollars) ~~~x\ e :
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\lrww_;ll{ Ulf?ﬂfr%@%@g.in (Dollars)
AN
PO & 1 -10,000
| A
// LY
S
N | 115,000
A
NS |
AN -—————1}-20,000
i"\.:’
A\ Fig. 6.01 Hypothetical Utility Curve

.'\

oifféiinat.cly, as I have indicated, this Udlity scale I3 still es-
Nséntially speculative,

In Figure 6.01 an arbitrary Utility curve is llustrated. 1
the Utility ol a dollar were constant then the dotted curve
would describe the situation. 1 have shown the Utility curve a3
flattening off as the monetary gain increases. Income taxes
might account for part of this ellect so that $10,000 proﬁt was
not really worth twice as much as a $5000 profit. I have shown
the curve as going down more sharply as the losses mount 4p
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This might be partially caused by the fact that if the capital is
lost the businessman can be regarded as not only losing the
profits on this particular deal but also the capacity to make
profits on possible future deals.

Suppose now that the expectation of deal A is recaleulated,

using Eltilities instead of dollars and cents. It becomues:
Er, = (%) (5000) 4 (%) (—20,000) = 0.

The use of the criterion that the expectation be maximizedhy
will thevefore lead to the decision: Choose deal B. O

Ny

-
NN
< 3

Conflict of Rules K7,

A\
Although [ have raised this issue of choice of rul&’a’\lfor action,
I do net want to give the impression that this Q akerious stum-
bling block to the applications of Statistical Dgision. The choice
of rule is tied very closely to the Pr(ﬂ)al)}}i’t}': and Value Systems.
While T have separated the three cgniphnems of a Decision-
Maker for purposes of simpliig'ling the exp(351!,ion, it should be
evident that in the constriction 5f‘grﬁéfﬁi%ﬁﬂaker these three
components arc closely integ'gaaféd.

In practice the situatiop.Js not as bad as the examples I.h‘avc
used in this chapter m@‘ht indicate. Ordinarily the decleno?s
obtained from the difficrent criteria are quite similar. Even 1n
cases in which d,iﬂ’éf’éht decisions are obtained this may be less
annoying to LL}d‘éllétUIncr than it would be to the logician. When
decisions @kéw\si'iifted it usually means that the decision 1s a
fairly dos,(‘-:\one; the rules will therefore Jead to good decisions
even {dig’){fgh they might not Le the best possible. From what
cx}iéﬁiénce 1 have had in practical applications, 1 would say that
these maxima or pinima are relatively flat; in other words,
cven il the absolute maximum is not obtained there will be
only a small loss involved in getting a value near the maximum
rather than exactly at the maximuim.

Theve has bceﬁ a tendency in the past for rescarch to con-
centrate on the ahsolute maximurm, i.e., the very best. In this
sensc the “best’” has been the enemy of the “good.” Usefud meth-
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ndotogies have been stigmatized as ineflicient or crude when
from a pragmatic standpomnit there was really very litile advan-
tage to be obtained from the more complicated procedures that
represented the “hest” approach, Onc very real advantage of
Statistical Decision is that it can provide a reconciliation be-
tween best and good. This advantage is lost, howesor, if the
good 1s neglected and eniphasis is placed cntirely on the seaxch
[or the best. A

What this all means in practice is that nearly 311_\"1'{':;:?5'0\11211316
critevion will lead to good decisions in the sense thay ¥ there are
major advantages to one linc of action this ormf\\:ﬂ'l he picked
out by the different criteria. On the other |1.a‘r)'<1.‘, if the decision
is very closc and it does not really make el differcice which
action is chosen, the dillerent criteriasindy very well lead to
different choices. \

Fven in situations in which th:efd is a material ditlerence
between the lines of action interms of consequences. the fact
that dillerent {j]‘itc\b’i‘a\'\’ld@dﬁ{lﬁﬁﬁéﬂ&ﬁm’ﬁliri“.hoi(_‘.(’_s of actien 18 0ot
necessarily bad. Thus in agambling game such as blackjack the
maximum expcctaticl];{’“is possessed by the banker. The player
has the advantage dlterms of loss-control smce he only risks
his bet, whereas, ﬁ}e bank sometimes has to pay off to a large
number of plavers and thus has poorer control of its losses on
a given hafidh The house is in business for longrun profic so
it re?‘algdé'“the game as an instance of Case II. a routine de-
cisionand it has the capital to pay off occasional heavy losses.
T['\fi(f3]']]}1‘_¢’(TT who lacks this rescrve may regard the game as a

~Jmstance of Case § in which survival means that the player will
he able to continue to play. Conscquently, although the (WO
criteria gave two diffcrent answers, both answers seenl ap°
propriate to the two different customers.

In the next two chapters I will deal with the naximun €x
pectation criterion, but I have made this cholce because 1 be-
lieve the criterion is a little easier to understand and because
it does not involve any complicated mathematics.
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Sunimavy

Several possible rules for action are discussed and illustrated
and (he mottvations [or the rules examined. The two principal
criteria are maximizing the expected gain and minimizing the
maximii rish, While it Is emphasized that the ime 1s not yet
ripe Lot the selection of any one rule as e rule for action, it is A
also poiured out that in practice the choice of rule 15 not A\

critical. <>)
i\ ,
O
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CHAPTER 7

OPERATING A
DECISION-MAKER .

2\ A

The Saint Petersburg Paradox

Yach of the components of the Dcci;s:iﬁn’-l\iaker has been
briefly discussed, and now these pieceg..i*}:i‘l'l be asscrnbled into
a machine for making decisions. I(witl ry to illustrate ihe
process by two simple little cxan’]‘pft:s."

The first example isawdbrellippingoggme. This sort of ex-
ample is especially convenicnEbecause it is easy to sct up both
the Predicting System and the Value System.

In this game a coin isil]i})p&d. If it 1s tails, the game ends. If 1t
is heads, the banker }%Is out onc dollar, and the coin is flipped
again. This procedure is repeated on the second toss. The game
automatically fiyminates on the third toss if it has not already
been ende.d\'gfhe player pays one dollar for the privilege of
playing.‘.ﬁlé decision to be made is: Should T play or bank the
game?. };

mTETé'Predicting System is casily constructed providing we are
sagisfied that a fair coin is to be used (i.e., the probability of
heads is equal to 14 and so is the probability of tails). Let H
stands for hecads and 1" for tails. Then P(7T), the probabil-
ity that the first flip comes up tails, is equal to L5 and this is
also the probability that the game ends with a single flip.

If the [irst toss is heads and the second toss is tails, then the
game ends on the second toss. Let us consider the probability of
this event, P {HT). Since there is plenty of evidence that coin

118
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flips can he regarded as independent, the special multiplication
rule (£.067 on page 72 can be applied:

PIH,T)=PH P(T) = (4) (14) = Y-

If the sccond toss is also heads the game goes on to the third
toss and a repeated application of {4.06) glves:

PUETTTY = POTYP(H)P(T) = () (1) (1) = (14)° = YA
P(HHIL — P (H) P (E) P (H) = (&) (14) (14) =04)° =0k

This completes the Predicting System because we h’a‘y«,c"fgund
the probability of each of the possible outcomes. Nexs, a Value
Svstemm niust be consiructed and here the ust.}al,}ﬁollars-and-
cents scale scems appropriate. Suppose that 2lje" game is con-
sidered from the point of view of the p]:}?}f&‘?Tl'l(ﬁﬂ the desir-
ability of the outcome in which tails egotsrs on the first fip is
zero since the player recelves no payﬂic‘h‘t. The desirability of
the ontcone HT is one dollar andsgen. A table ol probabilities
and desirvabilities can noivﬂa“%wﬁ’éﬁi@@m@iy-m‘g-iﬂ

~

Cutrome Probabiliyy ) Desirability (in dollars)
T AI}‘:} Q
HT Q7 !
HHT AN 18 2
ITHH @ 18 3

If the rulg ’1‘01' action is maximize the expectation, then the

-CXPC(:tati;‘Qiqf the player, £, must be calculated:
L$ (1) 0+ () 1+ (14) 2 +(14) 3 — 1 =—§0.125

40\ Y/ .
Wherc the —1 is the price of playing the game. The expectation
of the banker will simply be the negative of the player’s expecia-
tion:

E, = $0.125.

This leads to the decision: Bank the game.

The player’s expectation of —$0.125 has the interpretation

that the player will lose, on the average, afl eighth of a dollar
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each time he plays the game. If he can play [our bundred games
in the course of an evening he will ordinarily leave somne 550,00
with the banker. Perhaps this will teach him o abide by the
time-honotred rule: Don't play gambling games when vour ex-
pectation is negative.

Las Vegas, Reno, and Monte Carlo make a steads profit be-
cause the customers cither do not know this rule oy clse Qe
liberately disrcgard it. Very few gambling houses. lewalbor
illegal, will play fair games with their customers b \-“Smn?s
in which the expectation of both house and customeitds zero).
The house is in a business which is less speculativg, ‘len MIOSL -
vestment trusts or small businesses—only tu\?um Meys are
really gambling, not the house irsclf,

The coinflipping game can be 111ad,e\ vore interesting by
altering some of the rules, For c‘nmple\the limitation chat the
game automatically ends on three (tofses can be removed and
the game allowed to continug"lm"til the lirst tail appearts,
whenever this may be\;\.ﬁ&bﬁéuﬁbﬁﬁﬁbr@me 1s no limit to the
nuinber of possible outcomeéstand the expeciation is not sa €asy
to calculate. The terms\dle

a—(1’90+(1/Q\1 (1/8>2+<1/16>3 :
e SRV T R

where the thdée dots indicate that there arc infinitcly many
more teru{s})ut they have not been written down. The reader
can tCSN‘}IS understanding of this matcrial by writing down
somelnore of the terms,
Ndw even though there are infinitcly many terms in this swi,
\a Jmathematician can add them up. If vou arc not a matherna
tician, you will have to take my word for it that the sum of all
these terms equals one and hence the expectation turns out (o
be zero.
Therelore the maximum expectation criterion indicatcs a
completely balanced clhoice as to whether to bank o play this
modified game, However, the player risks only a dollar w hile
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the banker, il therc is a long run of heads, will have Lo pay out
a Targe sun of money. Consequenily by the loss-control criterion
the decision is: Let the other fellow bank the game.

A vury curious result oceurs il one further modification in
the game Is made. Suppose that the game goes on until the st
tail appears and furthermorc the banker’s payments are altered.
He munst pay $1.00 lor HT, $2.00 for HH'T, $4.00 for HHHT,
$8.00 for HHHEHT, and so on, doubling the pagment cach tirted
This 1nuch inercased schedule of payments is called the(St
Petershura game (or paradox) . [t leads to a very strange(fesult.

Nawrilly the banker should be paid more as a stajee\because
he must pay out more. How much should he defitand of the
player to make this a fair game with zero expet@tion?

The t'-xp{:('tat.ion now hecomes: O
INY

E= (1/20+ (191 + (1/8)2+ @AH 4+ (1/32)8
4. . .— stake,
E=0+1/4+1/4-+1/44 1/4e . . — siake.
P Sy wwxai.glﬁrﬁulibral‘y,org‘in

Not even a mathematiciaﬁ’cén add up this infinitc series be-
cause it has no upperimljinit. If the banker follows the rule
against negative cxp’sé;zitions, he should refuse to play the game
even if the player oflers him a stake equal to the present na-
tional debt. A&/

This is a ?i:r'a.dox because most people (including mathema-
ticians) t\ould be glad to bank the game for a million dollars,
or evefina thousand dollars. 1t looks as though something is
\gzgrzij;"{vil,lm mathernatical expectations if they lead to unrea-
Sonable decisions.

Many explanations have been offered to resolve the paradox.
1t is intcresting to note that the first proposal lor Utilities in-
stcad of monctary units was suggested ip order to resolve this
paradox. Danicl Bernoulli argued that the logarithm of the pay-
ment, rather than the payment itself, was an appropriate meas-
ure of Udilicy ol the l‘ja}-“ﬂlﬂl’lt (thc CX]J(:’(“i:;ltiOIl is fnite if the
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logarithms of the payments are used). This inecnious solution
merely led mathematicians to devisc new versions of 1he game
in which the expectation became infinite even il fovarithims
werc uscd.,

Actually the St. Pctersburg game is not a genuine pavadox,
The difficulty arises because the very simple ntodel ol il came
used to caleulate probabilities omits the linitations of any adal
game—such as the banker's ability to pay—and il a ;uu'{g\’.sl‘\eal-
istic model is constructed to include these 1imitationyereason-
able (and finite) stakes are abtained. The moral of\u¥is story
1s that mathematical, like verbal, analogics can hrtf carvied oo
far (i.c., to infinity) . AN\

Some people have erroncously concluded that the whole diff-
culty with the St, Pctershurg game is Lh'at.\}lfc pavienls go up
so fast (doubling each time). Here issanother game, due to
Feller,* with which you might like to{Cxperiment.

Feller’s game: A coin is repeatedly’ (ossed, and the total num-
ber of heads and taibwi&/,H‘%@@éﬂﬁﬂrg}l@}mnkcr pavs one cent
for each toss until the game&dmes to an end. The plaver pays
a stake for the privilege of playing the game, The game comes
to an cnd whenever 18are heads have heen tossed than tails.
Thus, if a head apptﬁ&s on the {irst toss the game ends. If a rail

is followed by two.heads the game ends on the third toss, and
SC On. O\

Hint: P]”a{y\th(, game, do not bank it It MAY SaVe Arguments
to agreetowplay a fixed number of games, say ten, before com-
menciqjg the play. You can afford to pay a considerable stake for
theprivilege of playing this game. For details sce Feller's excel-
s@m"book on probability, This ve
expectation if no limits are placed on the banker’s ability to
pay or on the numher of games to be played. Even if played for
pennics the losses can casily run into many dollars. It can be

one of the MOst exasperating games ever invented. So don't
pick & banker with a bad temperl|

ry simplc game has an infinite

tTeller, W., dn Introduction tg Prababili icatl
ler, W, s 4 ity Theory and Its Applicalions,
Jehn Wiley & Song, Inc., New York, 1418 ’ Y wr
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Business Idecisions

let us turn now to the sad plight of a manufacturer, Mr. M.,
whose {aciory makes plastic gadgets which contain small metal
inserts. if these inserts arc the proper size the gadget works;
il they ave oversized or undersized the gadget will not function,
and the product must be scrapped. Lately Mr. M. has becomc .
convinced that entircly too many of the metal inserts are delec
tive, and lie calls a conference to discuss the problem. R\,

“Somerhing has got to be done about our scrap ratel” ¥ M.
announces. “All the profits are going Into scrap. Ij’x‘-ﬁfﬁt some
suggestions.” RS 7

“We've had a bad batch of inserts lately,” Pustbasing admits,
“but no other supplier gives us a price on il}s&;‘ps. We've howled
and the supplier has checked his production’” processes and has
got them hack into control. On the whole his quality has been
pretty good for the price.” R\

Mr. AL glaves. “So }rouws¢lg%i§§;%1.%&,;;“:{5.?Iarflead as usual
well—" {Mr. M., pauses as he rjememjl)ers ‘\{115 ‘F[";llooc] pressure and
his doctor’s instructions) , Swell, how about other suggestions?”

“I think we should, gi'n\spect all the inserts before we use
them,” Production d’éﬁ‘a}es. He's made this suggestion before,
but Costs has always vetoed it.

“Tt does’t cadeanuch to inspect one insert,” Gosts chimes in,
“but to insp:\‘c:,t\évery one will knock down the profits a whole
lot more \l,l\k:in'a little scrap. But we might inspect a sample {rom
each lokand ship the bum lots back.”

:.‘\NIC}..‘;Oap,” growls Production. “What are my hoys supposed
tb\db while the inserts go shuttling back and forth across the
Stater”

Alter Production and Costs have restated their positions six
times ywithiout modifying them one iota there is a lull.

“This is getting nowliere,” Mr. M. points out rather grimly,

There is a silence so profound that one can almaost hear Mr,
Ms ulcers growing. Finally a junior cngineer, fresh out of
college and guality control courses, VENLITES a suggestion.
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“We might take a sample and decide, on the basis ol the

sample, whether or not to 100

LR . N e
7, inspect the lows, Thai way

we'd only have to inspect part of the lots, mainly the Lad ones
which we would want to inspect anyway.”

“That sounds O.K.,” nods Production. “How do yoi do it,
Juniore”

Qs

we oot oul thé S

bl

“Well,” Junior launches into the topic,
AOQL charts and—" O\

The others listen to this statistical mhl)u ish with m»r\ asthg
impatience. Mr. M. locks unhappy--a had sign, Lm’m\ he
breaks into the oratory: 70

“We don't want a lecture, Tow much does all I‘i\s COst?”

“T'd have to figure it out by my charts—7 ‘[um(n says apol-
ogetically. N

“Just scrapping 4 few gadgets now and’ \en would be cheaper
than all this rigmarole,” contributes, Gorts.

“If we gotta inspect we might asSbel] inspect them all,” adds
Production, whosc OI%thb@mhbisamnﬂﬁslmmch dampened by
the lecture. "N

“0.K.,” Junior inLerp({{cs desperatcly to save his brainchild.
“Let’s get the costs %ﬂﬂ three methods.” And Junior writes
down on a pad of pa

N7 4y No inspection.
R M Az 1004, inspection.
\\ A, Sample inspection.
N\

‘L'ﬂ:}at& the usval quality on inserts?” Junior asks Purchas-
IH& )
N Depends on whether the supplier is in control or not,”
Purchasing answers. “In control we gct 29, defectives, out of
control mayhe 109"

“How much of the time is the manufacturi ing in control?”

“Most of the time—say four out of five lots.”

“0.K.,” says Juaior,
gadget“”

“About two bits——25 cents,” Costs replies.

Now how much does it cost to scrap 2
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“Sn ler's figure costs on the basis of a hundred inserts to make
it easicr,” Junior begins. “"That means we losc a quarter apiece
on the o bad inserts or 50 cents when production is in con-
trol. And swe lose $2.50 on the ten bad ipserts wlien production
is out of control, so that on the average the scrap costs, with no
inspection, would be:

L= (4/5) (0.50) 4 (1/5) (2.50) = 0,40 - 0.50 = $0.90
per hundred inserts.” O\

Mz, M, groans softly. N

“Now let's sce what happens with 1009, inspegtiigﬁ'. How
much does it cost to inspect an insert?” A

“Flhe last time we tried it—before we ga\-'.c*;i*t\ up—it cost
about % penny per insert to inspect it when_t0ot and labor costs
are fisured in,” replies Gosts with just a/fuggestion of a smile
ol satisfaction, \

“S¢ il we 10097 inspect we avoid,’stra.p hut it costs us a dollar
per lhuadred inserts to itx&pﬁgrdhﬁrg;ﬁbg—rﬁlmoqi;;

“That’s what I said before,,”}’ﬁlﬁsts says with a smile. “You lose
money by inspecting.” N

“Now suppose that iwtgl:pass the good lots, those with A ,de'
fective, and 1004, i&l{pt:’ct the bad lots, those with 109, defec-
tive. What would\this cost?” continucs Junior, ignoring the
interruption, ‘LL Costs 50 cents for scrap in the good lots and a
buck for insl)éclion in the bad lots or an over-all cost ol

_y

E, —%M) (0.50) - (1/5) (3.00) = 0.40 + 0.20 = $0.60.”

a

Jlil’ﬁ'hr paused. Mr, M. starcs at the 60-cent figure with new
T'ﬁte"r'cst.

“Wait a minute,” Costs objects. “What about the sampling
costs?”

“And how the hell do you know which are the good Tots?”
demands Production. “Do you usé a forked-stick divining rod?”

“This isn't a real scheme yet,” Junior says hastily. “1 just
wanted to show that it was possible fo save money by separating
the two kinds of lots. We'll have to do the scparation by 2
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sample inspection plan, say by inspecting 1027 ol al; meoning
lots. This would add 10 cents to the cost per landvcd and make
the total 70 cenis.”

“How does this sampling business works™ asks Mo, AL, who
is warming up to the schense.

“I can't give a plan right off, sir,” Jmtor acdimins, it takes a
while to work out a good one, but I can give an cvampleef
how such a plan would work, Suppose ten samples ;11'£\t;-1kcn
at random from cach lot of one hundred, These somlples are
inspecied and the lollowing rule is set up: If lllc-l'miif?"a’"rm defee-
tives, pass the lot without further inspection; jif.}.fn‘]'c are any
delectives, inspect the rest of tlie lot. 'm;\"

“First, let’s see what ]'1appens i good losd Ao nov need to
calculate the chance that there ave no defgetives or, wiint is the
same thing, the chance that all the ing)}t.é"are good. The chance
that the first insert i good is 98/180¥ the clance that the sece
ond 1nsert is good is also about‘QS;fl“('lO, and so on for ali ten in

[x4

the sample, Since thesw ardtaboimdeyse ause Hy events, or nearly so,

P (All ten are good) = NN

£ (First is good) P{(éccond is good) . .. P (Tenth is good)

—
'\s,.’ Al

ten terms

P (Al ten are gaod) = :
(_98_) 25_\)(9_8) BY L (BY gy
100/A100/A100 (100’)‘(@) ST
k——:*'_;;__ﬁ'w————._______J

,\\“" ien termg

_]1;1&1'01‘ takes a
,ﬂ‘ia}?'rule.
\ '“Next, consider wha
is that the probability ¢
0

minute to whip out the value of 0.81 on his

t happens in had lots, The only change
hat an insert {s good is now only 90,100,

L {All ten are good) = ({%)w = 0.35

hich tells the story.”
n the [ollowing table on the pad:

and we can set upa table w
Junior writes dow
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Probability of

Quality of Lot Passing the Lot 1009, Inspecting the Lot
Good 50, defective) 0.81 0.19
Bad (1097 defective] 0.35 0.65

“Tor good lots,” Junior continues, “we lose 50 cents in scrap
when we pass the lot and 90 cents in added inspection costs if
we 1007 inspect. So this gives: ~

(0.81) (0.50) + (0.19) {0.90) == $0.576 O\

- .. NS G
as the average cost of the scheme, apart from the original sample,

when this Jot is good. Tor bad lots we get N

(0.35) (2.50) + (0.65) (0.90) = sl

“To oer the expected cost, £y, tor this sample scheme we note
. 3 . . - $

that 8047 of the time we will lose S0.570 peér hundred and 209,

of the time we will lose 51.40 per hl{nﬁr‘(‘.d, and we will spend

10 cents per hundred for the saIn121£:’;i.Ii3§pt:CLiOIIS, 50

£, = {0.80) (0.576) 0. 2bRIH0) ytolgldh = $0.8523
or about 85 cents per huudréd, which would save a nickel per
hundred over not inspecting!”

“But that nickel willk be caten up by inspection costs hecause
it cosfs 1noney to, take a random sample.”” Costs is unconvinced.
“Besides, the ﬁgl}rés are all guesses—"

“IH e 1*QLQ;E}i'cf scheme maybe we can figure a gimmick to cut
inspeclioi\'c{ists,” Junior insists. “Anyway since we gt 1nserts
in lots b ten thousand, I'll bet we can get by with a couple of
h.meﬁéd in the sample and still give decent separation. I addi-
ﬁoﬁ we'll always have a tab on the quality of incoming lots so
we can ycll before we ever get badly hurt.”

Mr. M. only smiles. There is a really profound silence. Mr.

M.’s ulcers have stopped growing.

Levels of Decision
The fable of Mr. M. really involves two separate decision
problems. There is the exccutive decision: What 1nspection
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«heme should be used? There is also a lower-level decision if
[unior’s scheme is employed: Should a given lot be passed or
1009, inspected? This latrer decision is almost an automalic
process. A sample o inserts will be collected and inspected and
the defectives counted. 1f there are more than soamany delec-
tives the lot will be 10077, inspected. In this sense the decision
is objective—it is made by the data and the hwman factor 1
cssentially eliminated from the process. O\

Objectivity of decision is an important goal in sciencesand
is partly responsible lor the current popularity OF( .1',1}6}_101‘1'1
statistics in scientific research. Statistical methodgZaNoiv tie
data to “speak for itself” with a minimum intrusm}:\of humnan
preconceptions and biases. There is a very pracuical advantage
to this mechanization: Scientists will be led 4;0}[113 same conclu-
sions if they start from the same data 'cm’d‘\p'remiscs. Not only
does this produce the agrecment ol il‘f(i.i\;itfllals s0 essential 10
effective group action, but it t.enc}s’:fo reduce the amount of
cnerey wasted in futile Yofehditendireroversivs.

In the past, and cven today, 16 1s not uncommon [or scientists
to disagree violently on the conclusions to be drawn [rom 2
given body of data. {Lﬁ:ﬁlthough there may be a complete
deadlock at the dat.a‘l'e\-el, it may be possible for the scicntists
to agree al the n;@.’t:higher tevel, e, on the rules {or drawing
inferences {ropadata. If agreement is reached on these rules, and
these rules dfe“applied to the data, then agreement on the in-
terpretation of the data may be obtained.

I tln\nl‘\ that Statistical Decision can play much the same role
0 ﬁ%‘i@e' the boundaries of science; that is, it cowld be a method
forMcaching group decisions. The agreement of two or more
individuals 15 often an important aspect ol everyday decisions.

It may he casicr for a group to agree on probabilities and de-
sirabilities than on actions considered per sc. If probabilitics
and desirabilities arc still too controversial then 1t may be pos-
sible to agree on the next level—Prediction and Value Sys-
tems. In any case, these concepts of Staiistical Decision may
at least serve o break down the main problem into a number
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of sinaller, and possibly simpler, problems. The attempt to
think in rerms ol numbers instead of words may in itsclf help
to clear the annosphere. Somehow the use of words always scems
10 Inject irvelevant or cmotion-charged issues into a discussion.
Loavili “f;l“u{]d tlese issues again in the lase chapter.

Summnary

The {unctioning of a Dec iston-Maker 1s studied in fwo xﬁ’!&‘
siinple sitaations, a gambling game and an industrial ms]?}1 ion
problew. %ome potentially valuable featurcs of thc { stical
Decision-Maker are noted. <\§



CHAPTER 8

SEQUENTIAL DECISiON

A\

Decision Chains N
The types of decisions which you may be (_'all(r({mp(m 1o make
are probably quite unlike the very simple egaiuples of the last
chapter, To meet more complex and realisti¢ decision problerns,
it will be necessary to know the Leclqnie@lhc:tails of Prediction
and Value Systems—dctails that 1 Bawe been avoiding. More-
over, a thorough knowledgc ol the syiibolic language of science,
as well as specialized inlormatiaf ah i of application
speciaized A BRiaBAkg w4l licld of application,
may be required. N

The St. Petersburg gr-}}nc:'is simple becausc the probability
mechanism and rules pf\the gamce are man-mac. and because
there arc three ccrr@:iés ol experience whick can be utilized.
The casc of Mr./\. is not quite so simple hecause, although
there are som&twenty years of experiencr with industrial-
sampling ipspection, each individual application ¢ncounters 2
situation mdre or less unique insofar as prohabilitics anc costs
are cofiderned. In practice these

AR quantities (which I manufac-
tugedhtor the exaniple

) would have to be deter nined from avail-
’éih;lc’past expericnee or possibly [rom a trial run of the sarmpling

Ethcme; that 1s, from an experiment whose main purpose would
be to acquire the needed expericnce.

Both of the cxamples have dealt with repcatable events and
the costs and probabilities for such events can e obtained In
a straightforard fashion. Many decisions, howeve - deal with
novel situations in which past experience is scanty and in which
even the possible courses ol action are not evident. T Stau'stical

130
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Decision is 10 have a hroad field of application it must be
capable of dealing with problems of this nature. Hence the con-
ceptual basis of Statistical Decision will have to be broadened
or gencralized so as to cNCOMpass more complex decision prob-
lems. The easiest way to see what generalization is required is
to take a look at a more difficult situation.

An cmergency ambulance brings a dangerously il patient,
into a hospital. At the time that the patient is admitied therg \
are obviously hundreds of possible courses of action whigh
might be taken. These would range from putting the patient
into a bed to performing a major operation. At thelrime of
admission, however, it is not going to be possible o 'make the
choice of action because there is not enoughhlermation to
make an adequate decision. The line of act?@:actually {ollowed
would be to postpone any final decisi ';,\glnd to concentrate
on ohraining the necessary informatjgf) The first steps are to
take a history and make an cxarnin,z}'pfoﬁ of the patient.

From this information it ma 'g}}: ossible to make a diagnosis.
A diagnosis 1s simply a ¢ \a‘?;lé(zlt?ﬁ%) "BV EAdse of illness. The
practical advantage of a (;eré(“,t diagnosis is that it greatly sim-
plifies the decision prehlem. If the patient is suffering from
pneumonia, then therelevant past experience will be that deal-
ing with pneunmonia. This information will, in turn, suggest
a list of possibleéddourses of action. The course of action which
has been rry;)'{?is“Sllccessful in this past experience might be the
administiasion of antibiotics.

On the other hand, as is often the case, there might be scveral
@iaglibfsés which could be made from the history and prelimi-
‘{{afzy" examination. It would then be necessary to oblain more
information before coming to a decision. Blood tests and other
laboratory tests might be pcrformed in an attempt to eliminate
the alternative diagnoses.

The process of diagnosis is a decision problem, but it is only
a step in a larger decision problem. If a diagnosis which satisfies
the members of the staff is made there will still be other decision
problems associated with the choice of therapy. Relatively few
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diseases have specific remedies, i.e., therapies which will cure
the disease nearly all the me. Most discases may be (veated in
any of scveral ways, and none of these therapies will work all
the time. For example, there may be a choice between drugs
and an operation. In such a case, a second remedy may be tried
if one remedy fails.

Even il thie patient responds to treatment there ave otlier dof
cisions which must be made such as: When is it safe to dischamge
the paticnt? It is characteristic of most practical decisiopdoh-
lems that they involve not just one decision but rathek dseries
of decistons. Such a serics can be called a chain. ~ 3

Decision chains occur in the actual problems '@‘r_ic’bunlered in
scicnce, business, or everyday affairs. Military olﬂcrr‘ations also
involve sequences of decisions and often simyhdncous SCULCHCES
at different levels. Thus at the staff lg.\-%sli'st.l';ltegic decisions
must be made or changed as new infaMw¥tion comes in; at the
ficld level, these decisions must ':t.ré;xftili;fed to make tactical
decisions; and at the leyel ol piaRiibrdvy drgsin tactical decisions
must be used to make vitally important personal decisions
when the consequences of 4 ad decision may be fatal.

Ome of the advantagﬁﬁ:bf Statistical Decision over its prede-
cessors 15 that this se%}{\'frltial nature of the problan is recog-
nized and is incofperated directly into the structure of the
theory. A

Therc is’Qop}é to Sequential Decision than the job of hook-
ing up ajehain of Decision-Makers. Some very diffcult ques
tions aise when machinery is linked togetlicr in a series. In
SOQ}@"@‘:{}-‘S these difficulties are analogous to those encountered
when the components of a radio circuit are hooked together.
The performance of one set ol tubes not only alfects what hap-
pens furcher along the line, but sometimes the effects may travel
backwards along the chain. Peculiarities of a loud speaker, for
example, may affect the amplifier section, and sometimes sur-
prising phenomena, such as loud wailing noises, will cause the
equipment as a whole o perform very poorly even though the

S

N\

individual components have performed well when tested sep-
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arately. 'This phenomenon, called feedback by the communica-
tions engineers, is a key topic n cybernetics.”

Although the construction of a Sequential Decision-Maker
involves technical difliculties above and beyond those encoun-
tered in one-stage Decision-Makers, a very rapid exploration of
the subjuct s currently in progress. This work, I hope, will
supplement the present Sequential Decision-Makers {only a,
few of which have passed the developmental stage). .

“Sequential” is currently used in two senscs—a Narrow vie
and a broader one. In the Tarrow sense, the word dcg-liss\x-vith
the situarion in which experience is collected in“.lﬁ'ﬁc units
{observations) one at a time and the information{a¥’each stage
is used to make the choice between a terminalidecision (such
as pass or 1009, inspect) and 2 decision to\fake still another
observation. 'Fhe broader usage of thedserd aliows for such
alternatives as collecting some cntirelydifferent data or doing
an experinent to sec il the efficicagy of the collection process
can be illlpl‘(}\-'(.'d. W\\’W.FI}@:IZ;GI:Ilibl‘al'y.o‘r‘g.i]'l .

Many practical decision pipblems are sequential in a stll
wider sense. The decisions wmay relate not only Lo the process
of collecting the data pdich go into the hopper of the Decision-
Maker but to any other stage In the process as well. For
example, it may.‘b'&i\-‘orthwhilc to study thc methods of hmple-
menting the, féﬁEO]'llﬁlelldaLiOﬂS. Operations analysis * 1§ con-
cerned withnfitis problem (mainly in the military field}. Thus
even il Yre\Decision-Maker recommends that submarines should
be att&rked by air-surface teams equipped with given weapons,
thﬁi‘e\’ are mmany other decisions necessary (O implement this
%er’dict. For example, there may be various patterns of fire that
might be used, and a choice among these 18 necessary.

The decisions might even involve the Decision-Maker itself.
Tlhus one course of action might be “Stop work on this project
of evainating the services ol public-i'iealth nurses until an ade-

Wiener, N., Cvbernetics, Jobn Wiley & Sons. Inc. New York, 1948,

? Morse. P. and Kimball, G.. Methods of Operations Hesearch, John Wiley
& Sons, Inc, New Yok, 1951,
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juate value system can be constructed.” Gr it micht even he
‘Don’t bother with Statistical Decision at all in this problem
ince it would cost more to develop an adequate predicting sys-
em than we could hope to gain by making the right decision.”

Sequential Inspection

In this section Sequential Decision in the natrow sense will
be considered. In the narrow sense the sequential (‘cm{tcpts\:lr‘c
involved largely in answering the question, “Whaen rlo 'j’\hai-'e
enough data to make a decision?” This is ollen an dmportant
question in practice and, although the ‘iequt,ntlr\mlsuu has
been applied mainly to industrial inspection:Problems. there
is a large area of scientiflic research in “]11(“{ these scquential
concepts might prove [ruitful, ¢*¢

Suppose that I go to the market to bu} some grapes. Il I take
a grape as a sample, I hope to nnprmc my decision by bringing
in additional data. 1f the §ra pe dis sweet, then I purchasc a
bunch; if it is sour I Jdstpt %U{ﬁlljfracl a‘;eg These decisions are
called terminal decisions becatise when they are made the deci-
sion process comes to arL., e{ld The sequentlal approach allows
me a third course of a t\cm It the grape is “in between” I might
feel that I still did mot*have sufficient information to make an
adequate du,mon\ and that I should take a second grape to
obtain this 1nfag(rmatum

The mg}"bf samples enter very directly into sc quential proc-
esscs. If Isample one grape the proprietor of the fruit stand may
not oh}c,et it I take two, he may frown; if [ take three or more,
1 111‘%4& precipitate an unpleasant argument. ‘This would have
to\iw balanced against the consequences of getting “‘stung” on
my purchase.

If my sequential concepts are broad, there might he an addi-
tional alternative. I might fecl that the information 1 really
required was nol mercely a second sample of the grapces but, say,
a sample of the grapes offercd by a rival merchant across the

street.

Now let us turn to the corresponding problem which faccs
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our old friend Mr. M., who is purchasing metal inscrts {or the
plastic gadgets that he manufactures {Chapter 7, page 128) . The
technical complexities of Sequential Decision prevent me {rom
giving a simple example of the process so what I shall do instead
is to give an outline of the steps which are followed in setting up
a sequential scheme,

Scquential Processes of Inspection

The first step is to gather together the necessary prior infor
mation. ‘This will mcan that the following costs angi;{::bnéc-
quences must be cxamined: (1) the cost of sampling™2} the
cost of allowing a defective part to cnter the produ ction process,
and {3y the cost of rejecting a lot {i.e., the costml& 100, sam-
pling) . In addition to costs the prior probakilities must be de-
termined from knowledge of the produgr{bn pracesses uscd in
fabricating metal inserts and also fronithe past experience with
the quality of parts delivered. A

When this information is ;ﬁg.i«;g]’umaed the construction of a

. ) W M T‘al'}iﬁl"g.}ll - -
sequential sampling scheme can hegin. “Thé construction 18 a

technical job involving moach mathematics and computation.
Tle following outline giues only the skeleton and I shall give a
reference to a publication where the “meat” may be found:

1. Draw a grafil with one axis representing the number of
good piepey (i) and the other axis representing the num-
ber ()l(c"jl\f:?ccti\!e pieces (7} -

A #hy given stage in the sampling process will corre-
N spond to some point on the graph.

\m‘z B. Any actual series of samples may be represented by the

zigzag line joining a series of points.

1. For any point on the graph {which may be denoted by
two numbers i,j) the probability that the shipment con-
tains a given pro-portion of defectives, f2, can be computed
by Baves rule (sec page 81).

Iil. i the sampling is rerminated at any given stage (i§) the
cost information, combined with the results of step 11, can
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be used to calculate the expected cost of either of the two
pussible ferminal decisions. 'Pherefore, calenlate the exe
pected cost of decision if the shipment 1s rejected and also
the expected cost if the shipment is accepted.

IV. Rule: The terminal decision at any stage will be the one
with the smallest expected cost. Tet Ef be the minimum
expected cost for the stage (i) of a terminal deeisidny

V. If the sampling is continued at the stage (i.7) and@nbther
plece is inspected there will also be an expedftylt Cost of
decision, Let Ef be the expected cost of deqision if the
sampling is not terminated, D

VL. Rule: Continue the inspection if Eg‘}s Jess than F,.
Otherwise terminate the precess angd\iwake the decision in
accordance with the rule given ifistep 1V, Let 77, be the
smaller of £y and Y or in m?t’h}matical notation

Ej = minimm (£, E)

VII. The above rﬁ%%ﬂ?é?%qﬁé &fieiial process. To present
the rules in a simplc‘[oi‘m, each point on the graph may be
colored as follow§?

A, Color th ﬁoitnt white if E;< L,

B. Color fhe point red if EYy > Ej and il step 1V leads to
rejedidon of the lot,

C. C{silo'r the point hlue if Ly > L and if step 1V leads

\;":L«o’acccptance ol the shipment,

o - . . -
.A,l’thougl'l the construction of the sampling plan is guite com-
LPlicated the execution of the plan requires 2 minimum of intel-
S Jcctual prowess, After each sample the inspector counts the

number ol good pieces found so far, (1), and the number of

delectives, (/y, and locates the corresponding point on the
graph. The color of this point then tells the
do (for example, i the Point is colore
takes another sample) .

inspector what to
d white the inspector

It this is still too much of a strain on the abililies of the in-

spector, @ machine can easily be consiructed so that the inspector
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has onlv to punch one key if the last piece inspected is good and
another kKev if the piece is defective. A loud-speaker then tells
him what to do next.

If the process of inspection can be made automatic by the
use of N-rav inspection or some other device, the entire decision
can be made mechanically and the resulting robot takes over
the job of a purchasing agent! Statistical Decision leads to the
possibility of technological unemployment at a lower execullyé
level, O

When the scheme is placed in operation it should, i{rﬂ'm leng
tun, lead to minimum costs. It may produce a subftantial re-
duction in costs compared to a single samplc plﬁ.’r} such as the
onc discussed in Chapter 7. This is likely to Qappen if the costs
of inspection ar¢ high—a situation which/anight occur in de-
structive inspection (where the part m{l:st be destroved in the
process of inspection) . Test firing of budlets is one example of a
destructive inspection m\g@gggl,aqﬁ;%fg&%@fnis another example.

This discussion is incompletg becausc the actual calculation
of quantities like £ has not been mentioned. Such calculation
may be done by an ingenidts method due to A. Wald. Remem-
ber that the quamiti&ﬁﬁkte E¢ can be calculated directly, using
Bayes rule, and this, method can 2lso be used to obtain the
probability of gcﬁiﬁg a1 defective in the next sample if ¢ good
pieces and j dt{ﬁiﬁdives have heen obtained so far. Let this proba-
bility he gl

If tl‘lgsa'\mplc is defective the next stage will be (1,7 + 1) and
the e:xpeftc'rcﬁl cost of decision will be £5 ;. I the sample Is good
tl«@l‘né’xt stage will be (i + 1.f) and the expected cost of decision
will he £ i1, 1T either case it will cost an amount, say ¢, to lake
the additional sample. Conscquently the expected cost of con-
tinuing the sampling process will be

E, = piFripa + (1 — pi) By F ¢

At first glance we scem to have accomplished nothing by this
formula since the £*s depend on E*'s which we do not knosw.
In practical problems, however, the sequential process cventu-
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EXAMPLE OF A SEQUENTIAL PLAN FOR MEDICAL RESEARCH

DESIGN FOR DICISION

30
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Instructions lor use of above
chart appear on facing page,
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INSTRUCTIONS FOR USE OF SEQUENTIAL CHART

The pian is designed for clinical experimentation where a) the
patients enter the study over an extended period of time but where
it is possible to pair consecutive entrants, b} there are two treat-
ments urder study {old and newl, and one individual in the pair is,
assigned {alternately or at random) to each treatment, and <) after)
treatment the patients are clossified as cured or nof-cured. \ \J

R

T
< %

Use of the Plon: Each pair of patients constitutes sub-éi{peri'menf
whose ourcome is plotted on the above chart (Fig. 8.0TNindccordance
with the three rules given below. The plotting starfs\irom the e
in the lower ieft-hand corner of the chart. x\\

\ 7
N N
. W
S\
. ”‘ R - :
www dbrauliby 'é{sm‘g_m

PLOTTING-

1. If both patients are curedsonif neither patient is cured, nothing is

plotted. )
2. If the old treatmentcures end the new falls, mark an “X" to

the right of the jg?s‘g;entry on the chart.
3, If the new treafment cures and the old fails, mark an “>" cbove

the last enbrﬁ?iiﬁn the chart.
7N\

After‘edch entry is plotted a decision is made. This decision will
depﬂ‘d"on whether or not the last entry is outside of the heavy lines
fb%irri’érs} bounding the chait.

N\

DECISION RULES

1. 1f no barrier is ¢crassed, continue the study.
2. If a barrier is crossed, stop the study and make the statement
{or take the action) given on the chart for that particdlar barrier.

|

_
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ally comes to an end and at this stage (hy the definition of E%
in step VI) E* — F', and we can find £, The [ormula can there-
fore be used to work backward step by step and fiud all the Zr's
by an iterative process. A worked example of this sort of scheme
can be found on page 117 of Wald's book, Statistical Decision
Funcrions? A

‘The moral ol this story is that although the technical i (fiehl-
ties in Sequential Decision are formidable, the mathergaugians
can devise ways and means (o overcome them., By the ine they
arc finished the Decision-Maker can be operated "h}f"é.]rnosr any-
o1, "\\

Narrow Sequential Schemes in Scienct’\\ )
$

At fivst glance the sampling inspeg@jm‘f scheme presented in
the previous sections may scem fahfemoved from scientific
research, but actually a scienl:i.f;,tjél'tzrn faces virtually tie same
problem. Medical m*e’f?i-dl'ﬁi‘ﬁ"%’éﬁ&ﬁi]}ﬂ@‘,'gﬂﬁy wish 10 determine
whether a new treatment nffers any advantage over a standard
therapy. When the treadient is given to a patient, the results
are often described as, ‘{Sﬁccess” or “lailure,” classifications which
are obviously quitegimilar to the non-defective and defective
categories of the @idusirial probler,

The purpgseé’of the doctor and manufacturer may also be
parallel. ]ll'}"s"manui.'actm*er wants to use the information ab-
tained 'b\ni“inspecting a sample of metal inserts in order o de-
t(trn:&itc;le the action which should ﬁje taken on the entire ship-
ﬂlgﬁtof nserts {ie., whether to p?:iss or LO0%, inspect the Tot) .

\rlif.'e doctor wants to use the information obtained on a short
series of paticnts in order to recommend the therapy that shonld
be given to the population or clags of patients who suffer [rom
a specific discase. Like the manufacturer who has two courses
of action with respect ta the cntire, shipment of inserts, the
doctor has two courses of action with tespect to the population

19_30\\-':51(1, A, Siatisticad Decivion Functions, John Wiley & Sous, Inc., New York,
30
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of patients: he can recommend either the new treatment or the
standavd therapy,

At this point some major differences arise between the actions
of manulaciorer and the doctor, The shipment of inserts 1s an
easily defined gronp ol objects, whercas the patients who suf-
fer {rom o specific discase constitute a more tenuous collee-
Gon ol indisiduals, Morcover, the manufacturer has control
over the shipment, whercas the doctor does not have (_tont}“gi\
over all patients with a given disease. Consequently the manu=
facturcr can enforce his decision; if he says “10097 iilslp,(a‘(:}.’ the
for,” he can be reasonably confident that this acti;:ui will he
taken. The doctor, however, can only ?"eco-mmg‘@l\to other
doctors that they follow the new treatment; hc‘can‘not compel
them to do this. Hlis problem 1s more con}p’,}kated in that he
must convinee his colicagues that the new‘n}eéiment is superior.
Therefore the problem of the doctor is 0t merely one of select-
ing the best trreatment, hut ":}lggl%f;lggr'{zfil??lgﬁ_f“ﬁf”-g the superiority
to a somewhat skeptical audiencesy” Y-orE

A second distinction lies in“ehe value systems involved in
manufacturing and medicite. In the industrial problem the
cost of a wrong decisi ﬁfis’.cvaluat(rd in terms of dollars and
cents, and a good gost accountant or production analyst ¢an
estimare the costs,dPdecision, In the medical problem, however,
1t s not a simpl{h‘uﬁter to sct up a cost scale. If the new treat-
ment is aba 1{Ip§icd, although it could have saved ten additional
lives per Humdred patients, what is the cost of this mistake?

TI]@.\];l(fk of an adequate Value Systen in the problem is a
scfols”olstruction Lo the application of Decision-Makers of
the Wpe which T have emphasized so far. A temporary expedicnt
I8 t0 use a simple Value System in place of a more realistic one.
To some extent the use of this simple Value System may be
justificd by the shift in point of view from choice of action
to demonstrarion.

In spite of these distinctions between industry and science,
there is ¢nough common ground so that the Decision-Makers
developed in ome field have heen successfully used in the other

Q
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with refatively minor modifications. In both the industrial and
medical examples that I have given here, there is this [unda-
mental question of taking action with respect o a large ag-
gregate of individuals (paticnis or inserts) on the basis of a
sample. The question stands out clearly in the simpler in-
dustrial problem, but unfortunately it is occasionally over-
locked in medical problems.

At present there are only a few instances of narrow sequenrigl,
plans, like thic mnspection plan, which are used in scienge. n
ten years I think that there will be a much wider uscj.;éf\s?ich
schemes, W >

Broad Sequential Schemes in Science { ¢

When Scquential Decision in the wide sense is considered,
there is no such dearth of examples. Moss.eomprehensive ve-
scarch projects are inhevenily sequentiall cach stage of the
study laying the groundwork for, andspmetimes suggesting, the
next stage. The sequential concept.’is nol the discovery ol statis-
ticians; they have simply. dysdandaiby drehits idea, an imporrarnt
step in harnessing an idea :;1n;1:'15htting' it to work,

Let us supposc that a r,(:'seal"(:l'i team is searching for an anii-
biotic which will be ’qﬁ"t’cti\-’c against a strain of polio virus.
The end product of %@e"search will be, if all goes well, a recom-
mendation of somé shemical to be used in therapy, Belore this
stage ol selectingldn antibiotic is reached, however, a long and
complex chafpyof preliminary decisions must be followed.

The [ior\{s\igfép is to take advantage of previous experience, to
scarch, the'medical and technical literatures for information. If
the g€am is to use laboratory expcrimentation as the primary
0oL, 71t will be Necessary to standardize technigues and de-
termine the accuracies of various measurements.

‘The second link in the decision chain is to choose the candi-
dates for testing those antibiotics which might work. Next the
experiment must be planned and performed. When this experi-
ment is finished the results may then be used to sclect the candi-
dates for further study, another decision problem.

After the unpromising candidates have been weeded out,
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efficient raethods of administration and optimum dosage must
be determined. By proceeding stepwise the scientist eventually
arrives at the termipal decision recommending ome or 1more
antibiotics for use against the virus.

This laboratory experimentation musi then be followed by
further testing, possibly by the clinical staff of a hospital. Even
this mav 1ot be sufficient, however, and an exicnsive cooperas
tive studv involving hospitals all over America may be under-
taken {as was done, for example, in connection with penicillip
and syphity). )

The actual conduct of research is not always a straiglﬁ—\for-
ward process; sometimes a line of rescarch ends up in"é’«.blind
alley, and & new start must be made. Somctimcsmz{:{3’1‘(_1111ising
fead is overlooked and not exploited for many-y&ars. The vari-
ous speccialized techniques employed in the yapplication of
Statistical Decision to scientific work ax< designed to avoid
blind allevs and to reveal promising Jeads. Detours will still
occur, cven when Statistical Dccision’js"uscd, but there will be
fewer of them. W“’W-db"a?,ligz:a'l'Y-OT‘g-ill

I do not want to give the i1npj1jé§s£;ion, however, that Statistical
Decision will substitute for tlie creative imagination which is the
mark of a top-flight sciclzl"f.i}t or that it will enable a complete
mechanization of the b&a&css of scientific research. Raiher it 1s
a powerful tool like @microscope or analytical balance. Modern
research 1'\'01'kg11:s‘,:\(;spccially' in the biological sciences, have
[ound that thet must learn to use statistical methodeologies just
as they m‘n}ié“]éarn niicroscopic techniques. Like a microscope,
the merhipds of Staiistical Decision can be inefficiently nsed or
C\’ﬁnilzﬁgilsec'l. Unlike the microscope, the processes of Statistical
Deésidion ave intellectual rather than physical; they represent
a quantitative logic which enables a scientist to take effective
action toward the accomplishment of the purposes of his
rescarch.

Statistical Decision js a powerful instrument in the process
of discovery. It is not, however, an automatic process of c.lis-
covery. It cannot lead to the choice of the best course of action
il this action has been omitted from the list of possible actions.
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it may, however, assist in an additional investigation o de-
termince possible courses of action.

The principles ol Statistical Decision arc tseful cven wlen
it is inconvenient to go rthrough all the technicalitics of the
constriuction of an actual Decision-Maker. The meve qiettiative
analysis of the problem may lead, without numerical work, o
Ve oui-

an improvement of the research process. The quuali
lining of the steps toward deeision Lorces the scientist 1o SvSLCIMA-
tize his planning and to think in tevms of the compoigty of
decision, to envision what prior information 1s 1166;]@ ’
values and purposes are involved, and what the no step in
the rescarch process might be. “

It has been my own expericnce that the mesg profitable part
of my consultative work has been in the supplying of a con-
ceptual framework which the research warker can use (o clarify
the planning of his project, On man¥ wecasions mv scientific
Iriends, after assimilating these principles, were able to anviver
for themselves the questions theyhad come to ask e, T hielieve
most consulting Stiﬁtxis&hi(‘ﬂhln‘l{mﬁiﬂ‘(}’i-QrgliIIII‘ with these remarks
and would agree that the n‘lmt important part ol their joh les
in the formulation, rathgi" than technical solution, of problenis
presented hy the resaegtre.‘h worker,

L\

Summary N\,

Complex dc’gis{on problems requive not one bur a sevies of
Decision—}l‘g&tr& The linking together of a chain of Decision-
R‘Iakcrg\hﬁas to the concept of Sequential Decision, In the
r'1;1r1‘5}1)r}ellse “sequential” velers to a plan in which. at each stage,
a dedision is made as (o whether 1o continue the experiment ov
\'E?) Stop experimentation and make a terminal decision. In the

road sense, the direction or path of the experimentation is
also determined by a stepwise plan. An examplc of a narrow
sequential plan [or industrial samnpling is indicated, and a broad
sequential plan lor a scientific research project is deseriled. The
utility ol the concepts, as well as the techniques, of Scq uential
Decision is cnphasized,
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e

In the previous chapters T have described the i-m’.eﬂga!’é;ruo
ture of the Decision-Maker. Now [ want to discuss t éiexternal
relationships, the manner 1n which Statistical{Dccision is
coupled to Uhe real world. Unul an adequate linkage with the
real world iy provided, the mechanism is”@l‘,-' an intcllectual
Loy. PN

The Decision-Maker is tied to realify. By both the input and
output stage. The (_;uupmr,wmj!qrmpﬁgm@:m{gnh for action, will
only be of pracrical value if t].1gr:'xft'lston'1cr actually puts these
recommmendations into efectdn the real world, Prablems arise
when the customer implem\ents the recommendations—prob-
lems which may be oveﬁ\‘&{ié by Sequential Decision or by such
techniques as Opcra.}:'ii‘ms Analysis—but in gencral the output
coupling is rather }t}raightforward. 1 want to focus attention
on the (_)1’.]1(}1"%’11\("; the input, the insertion of data into the
nle(‘hanimn,§w’ '

Data nui”;-' be regarded as the fuel of the De
fuel Jlbl1§L he of good quality if the mechanism is to function

h

PTONI‘H. Ordinarily Statistical Decision does not use raw data
d information. Unless con-

cision-Maker, This

—it operates on rather highly refine
siderable care 1s devoted to the procass of refining data, even
the fanciest chrominm-plated Decision-Maker will operate at
low cfliciency. In this chapter I want to tell you a little about
the operation of a data refinery.
I cannot overemphasize the importance of
145

good data to the

N
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successful operation of a Decision-Maker. Some customers have
the erroncous impression that an elaborate statistical technique
will compensate for poor quality data. It is true that a high-
powered, cfhcient technique can squeeze the last drop of in-
formation out of the data—but it can neither supply informa-
tion which is lacking nor eliminate misinformation. In [act, it
is generally true that a more clahorate analysis requires /igher
quality data. A single itcm of bad data may disrupt some of ghe
extremely elaboratc statistical devices. A
Another point to be made is that the job of (‘OHC(‘tiéa‘"{}’U()d
data demands just as much intelligence, {oresight, and Mnagina-
ticn as the job of designing Decision-Makers. The price ot
good data 1s eternal vigilance. Some tlworenmi‘[olks tend to
look down their noses at the scientists whangoHect data. hen
these theoretical people are faced withyaJpractical probicn,
their naive attitude toward data {requéfitly leads them into
some amusing boners. It s also pos&iiﬂ(‘: of course, ta go too {ar
in the other direction; in fact, this attitude is cven more com-
mon. The scientist \%M@tﬁhﬁuﬁtﬁl‘@ﬁmgéﬁ in the desperate ac-
cumulation of huge stacks G data that he never stops to think
what he will do with the@ata after it has been collected. \Vi hen,
at last, the scicntist dchéet around to the analysis of the data he
may [ind that \ery\ﬁtmor flaws in his collecting or recording
techniques have (réndercd his data worthless. The consulting
statistician offeft’has to play the villain's role in the last act of
this scientifi-fragedy—it is a very unpleasant part of his job.

Exiaﬁlﬁ\tion of Data _

. ;W'(h’én we sit down to make a decision we start with a tre-
\Qléf]dous supply of data. We, ourselves, have years of perso:rlal
cxperience and, if we take the trouble to go to a library, we
can avail ourselves of the accumulated expcrience of centuries.
Nearly all this experience will be irrelevant to our decision,
however, so the first problem which we must face iy that of
trying to separate a few kernels of grain from a great pile of
chail.
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The first requivement ol good data is relevancy.

Fyen when the separation of the relevant data is accom-
plished,. a second sifting is necessary. This second screening in-
yolves the refiability of the data. I find it very annoying that
when 1 think about a toplc my mMemory is likely to provide
me with a hodgepodge of hearsay, gossip, anccdote, and folk
lore. This vague, dubious, but colorful information seems to
be readily retained in my MEMmory, but if I want facts and
figures ¥ have to rely on some form of written MCmOory.

Now why do I regard hearsay or folk lore as unreliable? Qhe)
reason is that this type of data often turns out to be bi{ls’({d. T
shall be using this word “bias” in a somewhat moypg}g"@ncra]
sense than its ordinary usage. In everyday 1311:2;2{%’@" we fre-
quently use the word to denote deliberately dishouest informa-
tion, Propaganda and advertising are often bla.gﬂd in this sense.
Deliberate hias may range from the concedlitrg of unfavorable
information to the falsification of data, N\%

Another common meaning of bias {8aif the sense of preference
or prejudice. This sort‘fif‘b‘fbisl‘iﬁl.lkﬁiw{oﬁg_ithat the individual
believes his own data, Thus inﬁé{éntiﬁc rescarch one occasion-
ally finds an author who ifNptent on proving some favorite
thesis and who picks ant?mhooz;es from the available data in
such a way as to comg St with “proof” of his contentions. This
samc type of bias als’gi tends to occur when the success 0T failurc
of some new method is evaluated subjectively by an enthusiast
of that metheds :

In scic’r\m‘. ' usage the word bias is applicd 1o gituations in
which gouhtention or prcjudicc is involved, to 2 measuring in-
Stl‘lﬂljci?li, for example. A stecl measuring tape may be biased.
The tape would be biased relative to a caliper if, say, it gave
readings comsistently larger than those given by the calipet.
Sometimes we speak of an absolute bias instead of a relative
hias, but this means only that the instrument used for com-
parison is takcen as the standard. Bias, as uscd in this book, is
not to be regarded as an eraotional epithet,

The second requiremeit of good data is [reedom from bias.
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A third concept closely associated with ihe rveliability of data
Is repeatability or concordance. If it is claimed thar a can
contains 13 cunces of milk, then I should find 1L I measure the
contents in a graduated flask that my measurement is close to
13 ounces. ‘This should also be true if other people muke the
measurement.

In scientific research an experiment which leads to remark-
able new results will be accepted only if these vesulrs cad, be
duplicated by other research workers who repeat the ghigimal
experiment. ‘This tule has avoided many scientific x\\*'i!d’goose
chases; it has imparted a continuity to the progresy ol science.
On a (ew occasions this rule has resulted in sgmz’. delay in the
recognition of important new rescarch, bur t.l’lt‘:\l’\lE‘L cffect of the
rule has heen lavorable.

I think that we use this same (:onccpt’ojf\\l.‘e:pcatabi[ily 11 CVery-
day matters, One of my Iricuds mayNmsist that so-and-so, a
political personality, is very populdry To justify the remark my
friend may point out that he has:i;alked‘ to {ive people and they
all thought that er—"s[i’fﬁ’-.ﬁj(PT\a\-‘,{}&E&'dmIEr ellow. Almost automati-
cally T enumcrate the people whom I have encountered twith
opinions abeut so-and-sé N.c., T repeat my friend's experiment.
In the same way we@pe inclined to belicve an account of an
accident il the withdsses agree, and our suspiciony are aroused
if there 1s (:onﬂictihg testimony.

A third r:eqtﬁré:ment of good data is repeatability or concord-
ance, “\\

Tl‘lesﬁ't}frec criteria for good data—rclevance, freedom [rom
bias,, ah repeatability—do not exhaust the st Morveover, in
}Elﬁ\l&'st analysis the final criterion for data is the pragmatic one,
SL¢., that the use of the data in a Decision-Maker produces de-

cisions which lead to favorabie consequences. The three criteria
that T have listed, however, are very usctul in Tejecting faulty
data. Tn Chapter 12, we will formulate these eriteria in the
mare precise symbolic language.
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The Critical Mind

Technical concepts, such as the ahove criteria, are uscful in
evaluating cata, but perbaps the best protection against faulty
data is the development of a critical attitude towards data. The
best consuliing statisticians and research workers of my ac-
quainiance have developed this critical faculty to a high degree |
—it is somnething ol an occupational disease. Even alter working
with larec masses of data for many years (with much of ahds
data {rom research laberatories) the staustician ﬂnds.iﬁ:\-‘er’y
difficult o avoid the new pitfalls which constantlySappear.
Consequently an analyst finds that his safest 111(;&115{1 state is
to be “from Missourd” Q

So the most useful advice that I can give }".UQOCOTICCFDng data
is to suggest that you try to cultivate a crifical mind, that vou
learn to winnow out the information Mhich you receive. This
screening abilivy is rightly cmphasj;c’d'.as a prervequisite ol 4
scientise, but it 1s zlso importam.ip ':'m}' other field where de-
clsions niust be made. W“’W-db['a‘:i;nbra"y'm'g'i“

One characteristic whichiA have noted in my acquaintances
who have a highly develgped critical ability is that they scrupu-
lously avoid d(_)gmatic’\ﬁo’ims of view. On the other hand, the
credulous scientists whom I have encountercd have ncarly
alwayy exhibitedh mental inllexibility. Our educational meth-
ods are deficiég insofar as developing intellectual clasticity is
(‘.onc(:rl'mdxiu"[.act., it often takes scveral years of experience to
Overco 'i;“’hie rigidity produced by graduate training.

Aﬂ\seé.i:iﬁd characteristic which T have noted m individuals who
P&g‘sé‘sé a Leen critical mind is that these individnals have a wide
range ol intevests and experience with data. Apparently this
breadih of view helps them to spot jncongruities in the general
picture which are not apparent if each aspect of the data (i.e.,
collection, recording. ctc.} 1s scrutinized separately.

Therefore there are three steps that T would recommend for
the development of a eritical mind: (1) Avoid dogmatism;
{2) acquire a wide Tange of knowledge and experience; and
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{3) appreciate the technical tools which have been developed
for the cvaluation of data.

Private and Public Data

The problems which arise in conncction with data can be
subdivided into four catcgories: Classification, collection, re-
cording, and surmmarization. The problems of classificationace
associated with individual observations, whercas the prablets
ol the other three categories are associated with aggxzt{;@’:ﬂ}s of
observations. & M

An observation is a description of some phendmignon. This
description is ultimately based on raw or sen§ory data. Ttems
of raw data are inherently private; that is, {hest items can only
be used by the individual who has experidniced the scnsation.
Statistical Decision is necessarily base’(}'\:(jn public data, ie., in-
formation which can be communicatcd: Public data has already
undergone at lcast one stage alf\alistraction, for the 5CNSOLY
impressions have been translated into verbal or numerical form.
I think that this p0ih’Wﬁs’-@lQ{léiﬁKiéfﬁmeﬁ'ﬂéihbering because many
things can go wrong in p’his'{!cry first step. In the evaluation of
data, therefore, this hrs‘b step must be given carcful considera-
tion. N\

Suppose that I'am obscrving some phenomcenon such as the
bird on my witdow sill. Information comes in through the
various charmels of my sensory apparatusy but if T want to make
anote of\tig\é’phenumenon I will reject most of this information
as irrelevant. T would not write down that I am smelling the
tobdees T happen to be smoking because I fecl that this has
ndthing to do with the phenomenon T am describing.

Tacwually may write down: “There isa pigeon on my window
sill.” Note that in this statement 1 have made several classifica-
tions. Although I might think that I was merely recording an
impression of an external phenomenon, the situation is much
more complicated than that. My past experience with respect to
language, birds, and architecture has also entered this descrip-
tion. In fact there arc many ways, even in this very simple case



DATA 151

in which I, as the observer, have stamped the characteristics of
my personality upon the observation,

Moreover, 1 may have introduced into the data errors as-
sociated with aberrations in my sensory cquipment, ¢rrors re-
lated to wav pasl experience, imperfections in language, and so
on. Vhese various defects need no elaboration here; the phi-
losophers and. lately, the psychologists have gone into the
matter at length. Suffice it to say that this item of data, “There is
a pigeon on oy window sill,” is horn under a cloud! O\

These defects of data are, like death and taxes, something
that we have 1o learn to live with, At some point n t]'lC([’)f'{JdLlC-
tion of datz the human measuring Insirument, with all its
faults, is going to be involved. Although we cargt climinaie
the hunan observer we may profitably inquizey How can the
detrimental cflects be minimized? ‘O

I think tlat the answer to this ques.t.ic’_).ﬁ‘ is straightlorward:
We must try to arrange things so tha;;thr:'lmman plays as small
a role as possible in the gzlthcrl“iljgﬁibf"data. If the human ob-
server has a lairly cmni‘_’fﬁé‘é—f&ff‘i’ﬁl@‘am@om“tTY io break this
task up into a number of sitaple operations. Tle answer that I
have given above is really n informal statement of the famous

principle of scientific oBjectivity.

Objectivity andSubjectivity
Wliem the h{t\mn obscrver has a complex role in the gather-
ing of data ,{{16' adjective subjective is often applied to the data.
From nlg';:pl"cr\-'iOL_Ls remarks it lollows that the difference be-
tweend iﬁﬁjecti\-’c data and subjective data is a matter of degree,
nofkihd. Thus if a physicist records a pointer reading, we regard
the measurement as objective. 'The task of the human insiru-
ment is simple. "Ten other physicists can repeat the task and they
will write down pumbers which will be approximately the
same as the original reading.

Tf an art expert is asked to give an opinion on a painting,
however, we would regard his answer as subjective data. We
have called upon the observer to play a very complex role. Ten

#
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other art ¢xperts may repeat the task, but it is highly wmlikely
that the ten answers will be the same.

It is hardly surprising that objectivity is closely associated
with repeatability and freedom from hias. If the role is simple
enough an obscrver can not only obtain results which agree
well with his own previous results, but in addition he will
tend to agree with other observers. This repeatabilite malles it
relatively casy to detect individual biases and ¢von Lmcorrect
them, Note that our standard [or bias is based on ihi\Ile that
whenever an overwhelming majority of obscrversatt in agree-
ment they are, ipso facto, right. A (:olor-hIincl,?lis‘s‘enler might
msist that grass is gray, not grecn. Since thddreat majority of
observers agree that grass is green, the dbsetvation of a color-
blind man would he regarded as crrqn@)’us. Furthevimore, this
error would be regarded as a personal “hias.

The majority rule breaks dowhin subjective dara becausc
it is so hard to get a clear majekity. Since no standard lor bias
can be set up, we are willing (o acknowledge the inlluence of
the observer on tH‘é“i‘l‘ii:Pﬁfﬁy@bﬁi‘?ﬂ}fe?fﬁjE.% [orget this influcnce of
the observer in objective data, i.c., we feel that green iy as-
sociated only with g.lfe,\g;rzis.s, not with the observer,

Most scientists"prefer (o work with objective data whenever
possible, and_inysome scientific circles the word “subjective”
1s a form ofpféfanity when a pplied ta a scientific paper. While
1 l‘leartilv;@dnmlr with this passion for ohjeclivity, there 1s one
seriotts\:dﬂnger in this attitude. The first criterion for data,
relevarice, is occasionally overlooked. This has happened in
stidics of the effect of meteorological conditions on plant

\mg'f*owth. It is easy to mcasurc rainfall by an objective method,
such as a rain gauge, bus plant growth depends on the amount
of water that gets to the voots, not on the water that runs off or
is dissipated in other ways before it zets to the roots, The rain
gauge data turn outl to be very ncarly irvelevant when the
statistical techniques for determining relevance are employed.
Metcorologists are now aware of this difficulty and are cur-
rently searching for measures of rainfall which will be both
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objective and relevant. Social scientists must be especially wary
of this piifall which, to give it a name, might be called the
fatlacy of irrelevant objectivity.

Classification

The fizst stage ol the data refinery is the conversion of private
data to public data. The transition from sensory impressions
to verba: classifications or numerical measurements is not an
easy process, although it is often taken intaitively. Perhaps if Js
becausc of the intuitive nature of the process that the inkitrent
dificulzies are quite often overlooked. N\

When I see a large dog crossing the street I may sy to my-
sclf: “That dog is a collie.”” This classification 383 automatic
that T would not ordinarily stop to consider jusihow I made it.
If T weve challenged on this classification How could I justify
my designation? [ might say: “That dgg satisfics the definition
of a collic.”” Bur this statement wogldz anly lead to the further
questicn: What is the deﬁnitiop:{df a collic? If I go to my
Webster's Collegiate Wictidhmatittrafipdr gwo definitions. One
is a demonstrational definitian: a picture of a collie. The second
is a verbal definition: “ﬁﬁarge dog of a breed originating in
Scotland, used for geri¢kdtions in herding sheep.”

The demonstratidpal definition might be useful. I could
point o the actuddsdog and then to the piciure and say, “See,
there is a veryglose similarity—that proves the dog 1s a collie.”
The verbzd\ﬂ}c’ﬁnitiun is not very helpful since I would douht-
less l1axie.f;1\ very hard time proving that the dog in the street
had Sebtch ancestors or that these ancestors herded sheep.

StilY a third type of definition is possible—an operational
defihition. In an operational definition the classification would
be made by following a speciﬁcd series of actions. If [ were
sufliciently goaded by my challenger, I might suggest the fol-
lowing set of actions: (1} Check the dog license mumber,
{2) determine the owner, (3) locate the owner, (1) obtain the
pedigree if possible, and (b) use as the classification the state-

ment on the pedigree.
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Alternative operational definitions could be framed which
might be based on the opinion of a veterinarian or on a series
of measurements on the dog itsclf. The choice of an operational
definition would depend on the purpose of the invesrigation,
the means available for investigation, and the deprec of agree-
ment which could be obained concerning the operational
definition iesell, ~

Generally speaking, the most elfective approacl to the Drob-
lem of classilication is to wry to st up an operationd \delini-
tion. One evident advantage of such a definiton willDe that i
will reduce the role of the human observer and _Kmce provide
more objective data. A second advantage of Qj{ei:;fltion;-:.l delini-
tions is a semantic onc, All of us have cocoligrered delinicions
in which the concept that is being dehned turns up in the
definition itself. Operational deﬁniL’i’c@:s\ provide one way of
getiing out of this sort of vicious cipghel I might add that T have
found thar difficulties in 5(‘:ientiﬁc’cr{(perimentation frequently
turn out to he semantic prob]g}’néf

What T parricuIa%;}ay\a-ﬂmhiiﬁb"mnphngiu"e 1s that improvement
in a elassification process ‘f(rqulres close study of the process.
Improvement is not Qb&iimrd by clever manipulations of words
or even by prolos ofqzdtrationalizations. In particular it does
not invelve merely the setting up ol a clever verbal definition.
Impmvemenp@L""clasxiﬁcation is a subject [or rescarch, not
speculations\J

Frcq%ﬁ‘t}y extensive expcerimentation is necessary (o con-
strm'rt,‘fs?ﬂ “ad(:quate operational definition of a classification.
']"ll,(ifpfm}__ﬁowd definition must be used by various individuals
?III;CL the results examined (or relevance, repeatability, and free-

6m from bias. Some of the procedures will be mentioned in
Chapter 13,

Problems of classification arise in almost every human cn-
deavor—-in medical diagnosis, in (he specification of the quality
of goods, in administration, and even in sports where, for ex-
ample, it is often a moot question whether a pitched baschall
should be classified as a ball or a strike,
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A measurement may be regarded as a classification by numeri-
cal values. Thus a measurement ol weight given as 157 pounds
may be considered as indicating that the individual is in the
class of hiinans who weigh more than 156.5 pounds but at most
157.5 pounds. The shift from verbal classification to numerical
measurement will be discussed later.

Collection

That the gathering of data is not an indiscriminatc 0;“]’1&1)-
hazard process is a point which has been missed by a l,glislg\; suc-
cession of philosophers, commencing with Bacon,, Degails of
the collection process (such as the specification o,fj-\\-'iiére, when,
and how the observations will be made) arc ngbwery glamorous
and hence arc often overlooked. Neverthelgssa close attention
to these details “pays off”—mneglect 0£N~£i1'(*.se details is often
fatal. P\%

Systeruatic observation and sciemigific success avc closely as-
sociated. Occasionally unsystemaﬁc’ observations may provide
valuable clues, but tll‘é’“f:‘ﬁﬂiﬂif’c?},@ﬁﬁﬁ"&iﬁ’?ﬁé"clues requires care-
fully planned procedures Lar collecting data.

The Dasic idea assﬂcjat(}d with the collection of information
is the concept ol conleel. To illustrate this concept 1 want to
consider how we mfight go about the investigation of the effects
of a new [ertilizé&’ on the yield of corn. As you will sec, the
design of spgi}’ém investigation is rather complex—a far cry
from uns:,(' ematic, everyday obscrvations. Yet the first clues
concerniity the use ol fertilizer on field crops {one of the most
imp@itant technological advances in history) probably came
{fani "unsystcmatic observations; sharp and intelligent observers
noted that the grass was more luxuriant in the vicinity of animal
droppings.

We might start our design of a test for the new {ertilizer by
considering the resources that are available to us. We have, say,
a large field, a supply of homogencous seed, and a quantity of
the new fertilizer. We might merely spread the fertilizer, plant
the sced, and sce what happens, but it will pay us to see what
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information can be obtained and how we might wsce this ip-
formation before we actually perform the experiment.

If we spread our fertilizer over the entire ficld we will have
no standard lor comparison. When we calculate (he vield we
will obtain a number, but this number, by itsell, wiil not tell
us much. What we need to do is to fertilize part of the field with
the new compound and the rest of the field with some standaxd
compound so that we will he able 10 make a comparisop This
is one type of control, i.e., control of the factor under, .s\fﬁd}

We know that there will be other [actors relevaiir’io crop
yield as some parts of the field may be morc advafgaeos than
others with respect to soil, drainage, ctc. If we kcre to apply the
new fertilizer to the advantagcous areas the i;oinparison would
be misleading. Hence we would like to cahtrol the factors other
than those under study. A

One way we might do this would Peo divide the ficid tip into
blocks. We might expect that conditions would he more homo-
geneous within a biock than ‘w:i;ﬂ’lin the field as a whole. This
subdivision of the ﬁﬂéiﬁ“’iﬁ?ﬁ?ﬁi‘(?é'ﬁls‘%‘gﬁé?ents an application of
the principle of local Ilqmogeneity.

In order to obtainsa\comparison we would have both the
new and the old f’&tﬁi]izers represented in ecach hlock. So we
must divide the Blocks into plots. Now it is evident that the
yield on a plotavill depend on how much area there is in the
plot. This fagtor we can control directly since we can divide
the field\t& $uit ourselves. We would plan the subdivision so that
all plofs'are of the same size, 1f the shape of the plot were im-
pozl".v'\:flri't (it might be with a row crop) , we could alse specify
that'all the plots have the same shape. In collecting observations
we want to insure that, insofar as possible, the observations will
be comparable.

If we divide each block into two equal plots then the question
arises: Which fertilizer goes on which plot? If we ourselves make
the assignment it is always possible that some conscious or sub-
conscious bias will operate so that we assign the new fertilizer
to what we feel is the most favorabie plot (it would be just as
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biased if we lcaned over backwards in the assignment). What
we nced riow is some way ol controlling the experimenter and
one obvious way is to flip a coin to make the assignment. This
is an appiication of the principle of randomization.

We mazy still feel that we have not controlled an important
factor, say <he acidity of the soil. If we were worried about this
factor we might use still another control device, the principle
of auxiliavy mcasurement. To use this device we would take{
measurcinents of the soil acidity on each plot. The use of these
auxiliary measurements requires an advanced statistical ~£e§;"h-
nique (analysis of covariance} . A

At sorte point we may feel that we have coutro]lgd.fthé‘ major

extrancous lactors, but we realize that there a}‘@}rhany' other
factors which we have not controlled. PracticahVimitations of
our resources may prevent further efforts ’ap}tﬁntrol, SO we can
lump these other factors into what is.generally called expert-
mental ervor. We may then try to uselstdtistical control for the
experimental error. o

1t should be noted (H5Y Wibsafevsior&lty have confrol in
any absolute sense, although gore factors may be controlied to
a high degree. We I]'l%KSl.lCCEGd in limiting some of the
detrimental eflects, b t'\ﬁté never eliminate them altogether.

As you can see Lhk is morc to the job of collecting data
than the mere ;{g}g‘r’egation of observations. The collection
Processcs shm}lf\l:be systematic, carefully planned, and conscien-
tiously controfted.

N

Re(fo)ffiing

ZI‘“lftlss\’\--'arions devices for recording data are extcnsions of the
hﬁn'an memory. Like memory, these devices involve three
phases—insertion of the data, storage, and recall. Any recording
device must be judged by its performance on all three phascs:
pen and ink notes arc convenient with respect to insertion of the
data, they can be stored, but di{hculties arise when the recall
Phase is reached.

The details ol recording are even less glamorous than the
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detatls of collection processes, vet they are vitally important,
Consider, for example, the printed form which will be used to
record the data, The design of such a form might appear a
suitable occupation for an “ink-stained drudge,” but actually
the process is a very tricky one. Minor flaws in the printed form
may well lead to the unhappy result that a large amount of
data, collected at great expense, will turn out to be quite tiseless.
It may scem like a very small thing to specify (;:11"6[131}.5-:}}1e
dimensions (such as inches or centimeters) of the figasure-
ments that are recorded, but T have scen cases in wlidsh #ecords
which omitted these details were unusable. In zm.fg‘t?ier case an
ambiguity in the identification of the indi\-'id;l‘a"fs who were in-
cluded in a study led to the scrapping of am“tg}x})erimcm which
had alrcady taken two years of hard woTks
Clerical errors and incompletenes;sﬁﬁ‘ay also have sericus
effects. Sometimes editing can ovewcame these delects but this
is usually possible only il the .et':l}ti'ng is continuous and the
suspicious entry is caught carlifiME three years pass before any
editing is attempted! Tt HBABPEHFETE to undo the mischief
or else it may be very expe;islve to trace back to original sources.
Incompleteness is esp€ually frustrating. No matter how good
the form may be, gl éfe will be gaps in the data if the form is not
filled out propexlyMand this generally takes some superyision).
It is especially ',disconcerting to start out with records on hun-
dreds of p(?{éﬁle and then find that, because of deficicncies in
the recordifig (orm or in the recording itsclf, only a handful of
recordsarc complete enough to provide the information desired.
;\ﬁothcr source of frustration is to have good, complete data
mfj’y\t’to find that it is inaccessible. T it is necessary to go through
Noextensive files to locate the few records which are pertinent to
a problem it may be too expensive to make the required scarch.
It is primarily with respect to recall that the modern pruched-
card methods offer a great advantage. The newer machines
make it possible to search thousands of records in a relatively
short time. However, even this modern cquipment i3 not a

complete answer to the problems of recall. For one thing, the
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equipment is designed for routine administrative purposes in
which only a fimited recall is necessary. The billing of custom-
ers, for example, will involve the cards for only one month. A
study of hospital records may involve the accumulated punched-
cards for decades, and the number of cards in such situations
may be ups in the millions. Sorting large numbers of cards—
or even finding room to store them—may be difficalt and

CXpEnsive. '

The newoer electronic devices offer hope that current p}"g\){{-
Jems of memory may be solved. Just at present the mempoty of
even the best of these devices is 1ot very impressive: i Jnany
respects the human brain is a much better al]—argmﬁd instru-
ment. But the day is coming when the collect.jvj&s\cxperience
of mankind will be so voluminous that, wilhnuj; shechanical as-
sistance, sheer bulk will render it unusable\\’Stucients in this
future cra will have to rely on mechan;\%ﬂ memaories rather
than theiv own, and this will have a &onsiderable influcnce on
the nature of education in the futuftj:}

www.dbraut ibrary.org.in

Summarizacion N\

Systematic collection and recording of data are not unmixed
blessings. True, it 1s (Jseible to obtain much more imposing
aggregations of dafa, i this way, but such an overwhelming
mass of data may, ‘UI“} well confuse rather than clarity the issues.
Part of the dgnétninay secm to conflict with the rest of the data
and conse tfﬁ(}f’fﬂ\,-‘ it is often harder to make decisions {rom a
mass of dawd Lhaﬁ from a very sparsc supply of information.

A b\ndi of data may also be difficult to interpret simply be-
fﬁﬁv{:"ﬁ:’hc human mind has very definite limitations. I can com-
paté one number with a second number but I cannot readily
compare one set of twenty numbers with a second set of twenty
numbers, Somcthing must be done to bail down the data, to
summarize the information in terms of a tew numbers or state-
ments,

This summarization is another stage of abstraction, for we
must go from symbols to statements about symbols. The transi-
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tion brings up problems of relevance in another form, I{ 2 mass
of data is condensed into a few summary statements, sonic ol the
inlormation in the data is bound to be lost. Our problem is to
design our summary procedures so that we will lose as little
relevant information as possible. It might seem remarkable
that a thousund numbers can sometimes be summarized Ly just
fwe numbers and these two numbers may contain ncarly all of
the relevant information. A method of summarizatior which
can avoid loss of relevant information is called, in glosrade,
a sufficient summarization. O

Many different quantitics are used in the sunmfmigrization of
numerical data: Ratios, averages, indices, and‘firdex numbers.
We have already had occasion to use ratioy flor example, the
proportion of coin tosses in which heads\appear) . Averagos are
commonly used in everyday aflairs, thé/arithmetic mean being
the most familiar. Statisticians havgdeyolved some fancier types
of averages (such as moments) ‘;\-‘.!1;16171 are useful in special situa-
tions. Indices and index nuthei@ are also prominent in cvery-
day affairs, especially"c5s bf)?‘ﬂiu‘r?%%r?‘ ces.

The sammarization of “data is discussed at great length in
most elementary textbQoks on statistics. 1 shall not go into the
technical aspects tg(é.f

Summary

In this c],{ii;);er 1 have outlined the steps in the transition from
raw sensory data to refined data. Standards for good data are
discugsed"and the importance of a critical mind is emphagized.
Classification, collection, recording, and summarization of data

”.a\i"g\' stages in the refining process and cach is briefly described.
Tt is repeatedly pointed out that the chain of steps involved in
the operation of a data refine v will be no stronger than thc
weakest link. Y

The decisions that come ouf of the Decision-Maker will
reflect the quality of the data which e put into the machine.




CHAPTER 10 /
MODELS

The Symbolic World O

The duta refinery starts with raw data—the sightss Sounds,
and smells o the rcal world—and passes the dintormation
through sevrval processes of abstraction. The end product, re-
fined data, mizy then be pumped into the Dgc'ginn—Maker.

The Decision-Maker itself operates in b symbolic world.
A course of action is selected by a symbghrtnechanism and then
the process of abstraction is reversedi—the recommendation is
translated into physical w&o%im%&wsg}inwoﬂd-

The effecrive use of a Decisihﬁ-Maker requires some knowl-
edge about hoth worlds, sendory and symbolic. Experience with
data is needed for an ap,pfts\(,iation of the symbolic mechanism.
Similarly an understaﬁﬁ?ﬁg of the symbolic picture {1.c., the
model) is required, for an ﬁppreciation of data. This latter re-
mark may sirike ’ybli as curious. Perhaps it will secm less odd
when you he.g:.@i}ihish(rd this chapter.

Before I.®ﬁside1‘ {he rather elaborate statistical models, I
want to;l"r}votc some attention to the broad concept of a model.
MO,LLe:Ié“\.zirc vitally important in scientific work and, in my
optnion, in any intellectual endeavor. An understanding of the
Rature and role of a model is prercquisite to clear thinking.

In ordinary language the word “model” is used in various
ways, 1t covers such diverse subjects as the dolls with which
little girls play and also the photogenic “dolls” who occupy the
attention of mature men. I shall be concerned here with model
In the sense of replica (as in a model airplanc).

161
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Physical Models

There are several kinds of model aircraft. Solid scate models
resemble the actual plancs in general appearance (shape, mark-
ings, etc.). The llying model aircraft not only rescmnble the
originals in appearance but, to some extent, in funeciion as
well (L.c,, they arc capable of [ree flight). Some very claborate
modcls are e%‘icmially simplifted versions of real aivcraftdthey
have gasoline engines, operable controls, and may cyty have
radig-control mechanisms which allow the Plane toy lx Hrected
from the g -ound. "\

A boy w ho is Interested in aviation can le'tm ._lh()lli, the sub-
ject from the construction and epcration of a‘\c\.h {lyiny mrodels.
In much the sare way a scientist who hayednsiructed » model
of some natural phenomenon may learn\}bout this phenomenon
from a study of his model. ,~~\

The model aircraft is casier to §tudy than a fullsized aircraft
for various reasons. It is moréednvenient to handle and ma-
nipulate. It is d|sowrm[ﬁilf@iﬂﬁﬂihTﬁ‘ﬁi@T(St'IEMnaI, and principles of
operation may be more apparent There is some danger of over-
simplification, of coupse) and some characteristics of a rveal air-
craft would be oyer{doked il all attention were focused on the
model. \ N\

As a mattep0ffact, adult scientists use model aircrall (o learn
about the perfnrmancc of fullsized aircralt. They build care-
fully sr&k’ﬁ‘repllcas and test thesc models in wind tunnels. This
is a F@(‘h more economical process than to build a full-sized
amplane and then (o test it in a wind wunnel {a mammoth wind

,\tlfmlcl is a fabulously expensive piece of equipment;. This
\/ tYPC of argument by analogy has proved quite successful and
is used all the time by aircraft ENZLNCETS.

I do want to emphasize that the aircraft cngincers do not
trust the methed cntirely, that they carcfully test the full-sized
aircraft as well as the model. In other words, it does not [ollow
that one can aulomatically obtain useful information about
the original phenomena from the study of a model. Whether a
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model will b useful or not will have to be learned from ex-
perience, by comparing the performances of the original phe-
nomenon aned the replica.

The model vepresents a process of abstraction, The real air-
craft has mamy properties or attributes such as shape, weight,
and so on. Only a {ew of these properties are daplicated in the
model, The wind tunnel model, {or example, duplicates only
the shape. However, the aerodynamic performance depends
largely on this one characteristic; the other propertics are more,
or less irrelevant. N\

This is an cxample of an cflective process of abstrag.‘tjpﬁ. 1t
allows us Lo Locus our attention on a much simpler pl}gli()tﬁenon
without much loss from the fact that many details}lfave been
neglected. !

This particular type of abstraction, the zeorstruction of 2
physical model, s used in various branchesof scicnce, engincer-
ing, and industry. Models are used foydesign ocean liners,
bridges, water supply systems, and. Al ‘sorts of products {rom
automobiles o stage sce}‘lygr‘i{;dm‘&gb'ﬂ'aﬁi’oﬁiﬂéﬂnvolve a change
in size. In aircralt ;“.onstructiqn,‘r{fér example, a full-sized model
of a part of a planc is somCrinces constructed out of wood 1n
order to Insure that al'\r’lb%ent-mindcd designer docs not put
companents in placch }%nich cannot be reached for repairs. In
this situation the ;{-Iéﬁt’ant {actor is size, and the mock-up fas it
is commonly called) climinates other lactors such as weight,

function, arr\i;"s‘fj’on.
N

{

Abstraes Models

ﬂ“ghz scientific world physical models are occasionally used
for Mstructional purposes. Ina planetarium you will generally
find a model—Ilitile spheres which revolve on wire arms around
a big sphere—which presents a picture of the astronomer’s con-
teption of the solar system. This sort of model is often u‘seq te
demonstrate a phenomenon such as an eclipse. A rather sinilar
physical model is sometimes cmployed to explain tlie atom to
the general public. The solar model and the atom model iilus-
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trate one striking and sometimes confusing characieristic of
models; two very diverse phenomena can sometimes be Tepre-
sented by similar models.

"The solar model which you can sce in a planetarism has had
a very intercsting history. Nowadays we think of the sun as a
giant globe with a large family of little spheres circling
it. We locate ourselves on the third little sphere (counting out
from the sun}, and this notion does not cause us any Wental
anguish. In earlicr days the picture was quite diffffru"\r:and the
carth was regarded as the center of the system. (f* course if
we go back still further there are all sorts of fatitrions models
which involve giants, turtles, and sea serpentsy The history of
astronomy 1s the story of the evolution of.adhddel,

Did you notice that in describing the sdlar model I svas actu-
ally taking a further step in abstragfion? I was going from a
physical model to a wverbal mod€ly The little balis were re-
placed by their symbols, the worlslittle balls.”

All of us are accustomed toiié*ing verbal models in cur think-
ing processes and’ ‘W.'dﬁﬁa%tibﬁ‘?fiﬂﬁ%éfy. Verbal models have
played an important rolevin scienice, especially in the prelimi-
nary exploration of £0pic and presentation of results. Verbal
models are subje&tité a variety of difficultics, some of which I
have discussedyea lier, and most scientific fields have advanced
{or are trying, to advance) to the next stage—symbolic models
of 2 mat} ein\atical nature. Astronomy was one of the first sub-
jects tosmake this transition to the symbalic model. It should
be pated that uniil this stage was rcached there was rcally no
reason to prefer a model with the sun as a center to a model

~ith the earch as a center.

\ 3

Symbolic Models

In a symbolic model the balls and wire arms of the physical
model of the solar system are replaced by mathematical con-
cepts. Geometrical points are substituted for the balls. The next
problem is to replace the wire arms which hold the balls in
place. Now the wire arms have fixed lengths, and these lengths
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can be stated numerically. If all of the little balls revolve in
the same plane, only onc additional number is needed to Jocate
the geometrical point. This number would be the angle be-
tween the wire arm and a stationary arm which would serve
as a relerence point.

Hence two numbers—the radius (length of arm)} and an
angle—wii! fix the location of the gcometrical point just as
effectively as the wire arm fixes the location of the little sphere
in the physicai model. Actually the astronomer’s model Is muchy,
more complicated (han the symbolic model which I havendes
scribed, but the general principle of construction 15 the, sa;ne

Now suppese that the astronomer wants to use h,isf\*mode] to
predict eclipses. He will have to take obscrvation} to cbtain
specific numihers to use for the radius and anglewThese empir-
fcally determined quantities are substituted’in”the mathemati-
cal model and, after various manipulg.t’i(}ns, the astronomer
announces; " There will be an eclipse: of the moon visible in
the northeastern part of North Amfgtr’ik}a on sqch—and-such a date
and at so-and-so time.” “\Iww'dbf‘q.m?brm‘y'm'g'ln

It is at this point that a comfz‘éfison of alternative modcls can
be made. If the predictiom{ére borne out, the successful model
@an be used for futur ﬁre’dietions. If, on the other band, the
eclipse docs not occliy at the specified time, the scientist must
hegin looking fog @other model.

The PtOlenlgii;uastronomers set up a mathematical model of
the solar S)f._'tég}.f'xxritll the earth as a center. They first considered
that the ofier astronomical hodies moved 1n circles. When this
pictugqi{"{d not lead to adequatc predictions the Ptolemaic
asﬁleém‘ners decided the paths of the heavenly bodies were epi-
cycles. I you would like to visualize an epicycle, imagine two
gears, onc large and standing still and the other small and rolling
around the rim of the large one. An epicycle is the patl of a
tooth of the small gear.

This complication led to a little improvement in prediction,
but the forccasts were still quite unsatisfactory so the model was
tomplicated stil} furcher. This time the astronomers postulated
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that the paths of the heavenly bodies were cpicycles on epicycles,
lLiterally a “gears within gears” situation.

If you think that this is getting too complicated consider the
sad phght of the astronomers. They had to make the caleula-
tions which go along with this model of the solar system. None-
theless it was many years belore the simpler model with the
sun at the center of the solar system was widely accepted. ~

Therc is a moral in this epicycle story. Scientists occasioafally
become atlached to a model cven though it does not @ive ade-
quate prediction. They try to use the model by gtiﬁ?ing off a
piece here or adding a picce there, This patchworkvan ¢o an for
many years, and the resulting crazy quilt may phgvent the devel-
opment of new and more eflicient modelsfAfcer all, when it
takes a scientise ten years to master a cgl{lplex model, he has a
vested interest in it, and he someLim'[’:(i;s\hostHc to laborsaving
devices which may deprive him offis job. “Epicyclitis” is a
symptom of senility in a scientifia fefd.

Mathematical M‘ﬁﬁ'é‘lﬁjb"'gm.ibrary'm‘g'm
It might be puzzling, {5 “understand why the astronomcers
should go from a ni(;c*éﬁmplc physical model with little splieres
on wire arms to a §fihbolic model with all sorts of quecr tnathe-
matical signs when, 'if sufficient care were taken in the construc-
tion of the ph{$ical model, it would be possible to use it divectly
in order toyprédict eclipses. The astronomer’s choice is a matter
of tast .:'I‘me the astronomer’s point of view it is the mathe-
matigghinodel which is the simple one and the physical model
Wigﬁ.’balls and wire which is complex. Since the physical model
“isvmade out of metal it not only has attributes which are in-
\tcndcd to simulate the solar system, but it also has a lot of at-
~ tributes which depend on the materials used in its construction
and the way in which it is made. Thus the wire arms can be
geared to votate at an appropriate speed but the mounting and
drive arrangements of the model arc attributes of the model and
not attributes of the solar system which it is supposed Lo repre-
sent.
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Fven though great cave is lavished on the construction of the
physical model the predictions which would come out of it
would depend on friction, vibration, and other characteristics
of the model, Hence the prediction would be rendered inaccu-
rate by the enwance of attributes other than the ones which
were deliberately buile into the model to simulate the solar
system. ~

In a mathematical model, on the other hand, the material of
the made] itsell —in this case the symbolic ]anou'ioe—doe'q\nbt
ordinarily contribute such extrancous and unclem'ible Jattri-
butes. 1 we want friction in the mathematical model 45&'can put
it tn synibolically, but otherwise this friction wilLQ&f appear in
the modei and hence cannot disturb our predidtions. In the
physical model the process ol abstraction, tends to introduce
new and irrelevant details, while in the rrlx@thematlcal model the

.

pracess of abstraction does not. P

In this sense. thercfore, a ma;l}ematudl model 1s simple
whereas a physical moclﬁjz\q,scp@gﬂ,pyl}gwlio;:@q}g strike you as curi-
ous that I should say that Fingtein is working with an extremely
simple model in his theors of relativity, while a schoolboy 1s
working with an extreryely complex model when he builds an
airplane. 1f you thinkit over carcfully, however, you may see
the justice ol the starement.

Nm\- and theg™ mathematical modecl gets beyond the re-
sources of riu'\ndrhenntluans who construct it, so a physical
modc] i \\hsututed to obtain an answer. This is done n the
Monte .(u:ho method, a device for solving mathemartical prob-
lt,ms b« 'h aving one of the glant brain computers play gambling
E&Qles with itself. However, such devices are used for computa-
tional convenience rather than conceptual simplicity.

The construction of symbolic models is an important part of
the job of the scientist, and the great advances in science are
those in which a useful new model is introduced. In physics the
powerful model devised by Tsaac Newton 1s one landmark, the
relativity model of Finstein is another, and the quantum models
are a third landmark. In chemistry the gas laws, the mass action
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laws, and the periodic table are all the end results of successlul
models of atomic and molecular processes, In biology thic evolu-
tionary model of Charles Darwin (a verbal model) has been
developed into a mathematical model by R. A. Fisher and
Sewell Wright. Another important biological model is the one
which describes genetic inheritance. In medicine the models are
mainly verbal, but they are of great importance. Harvey's madel
of the circulatory system, and the various models of the redgtion
of the human body to invading organisms have influgheld the
development of the modern treatment of diseascs. | O

Effective verbal models which describe the #msmission of
diseasc have been uselul in the eradication of Wany of thic epi-
demic diseases which used to terrorive kniipanity. ¥orcs are
currently in progress to translate theseyverbal medels into
mathematical ones (epidemic theorw\} ut the earlier models
have been so successful that a modef)investigator is often hard
put to find enough data 1o test his téw mathematical models!

Currently, there ‘ié‘;}"%:?g%l;l:g'}ﬁ ilgpg(};r_oxfy 1y, which is attempiing to
devise mathematical mod‘eIs: for sociological phenomena, such
as the growth of cities, and' for psychological phenomena. Nor-
bert Wiener in Cybginetics' deals with a mathematical model
associated with thxﬁpération of the human brain.

Omne of the key, steps in the progress of a field of knowledge
toward scientiﬁc'hlaturity is the fabrication of models which en-
able successful prediction in that field. A tremendous amount
of imagimation and insight is needed for the creation of new
modelshbut they are only half of the story, The merc creation
of.{ﬁ'c’idels 15 not enough; the models must survive exacting tests,

“‘t{l’&}' must meet the pragmatic criterion, they must work. -1

‘This brings us back to data. The test of the model involves
data from the real world. Without adequate data the construc-
tion of models is 2 mathematical pastime. Purely speculative
mathematical models may be as useless as purely sp(:culati\-’ff
verbal models. For example, I might construct a very fancy
mathematical model to describe the mechanism of transmis-

1Wiencr. N.. Cvbernetics. Tohn Wiley & Sons, Ine., New York, 1948,
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sion of snme virus disease. No good diagnostic test may be
known for the discase, and consequently the available data may
be quite vrveliable. If a doctor comes along with a quick, cheap,
and effeciive skin test {or this disease, it may then be possible
to get ad-cuate data to test my fancy model. Until this hap-
pens my rwodel is just another mathematical game. After the
developuicnt ol the skin test, the model may turn out to be use.,
fulin the imderstanding and control of the disease or, as is mor¢
likely, it may turn out to be a complete waste of time. e\

Progress in science is bascd on this constant interplay bigtween
model zd data. Sometimes there is a tremendous gmigunt of
observaticnal data available but no satisfactory m@del, so that
little progress is made. This was the situatigd ih astronomy
before the heliocentric model and it alsg\Mds occurred re-
peatedly in the biological sciences. At pther times there are
elaborate models but little adequate)data. Something resem-
bling this situation occurred in ec’(m’m’nics where an elaborate
mathematiczl theory &%s{v%agmlegy“olpgcllh did rather poorly
when tested with actual data. (™

Occasionally a scientist got"rinly works out the mode! but also
obtains the data. Darwiahand Galileo accomplished this feat.
More often one man{\‘s'lich as Brahé, gathers good data and
another man, suclf™as Kepler, supplies the model. When this
division of lab‘m{’ becurs it is rather pointless to say that the
model-maker/Ji$~a grcater scientist than the data-grubber, for
the ad\*alm\é'iﬁEpellds on teamwork.

O

Advantages
Q?hy should a model be used? The real answer to this ques-
tion is that this procedure has been [ollowed in the develop-
ment of the most successful predicting systems so far produced,
the predicting systems used in science. It is simply a matter of
going along with a winner.

Some of the advantages of model-making might, however,
deserve a scparate statement. A big advantage of 2 model is that
it provides a frame of reference for consideration of the prob-
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lem. This is often an advantage even il the preliminary model
does not lead to successful prediction. The model may suggest
mformational gaps which are not immediately apparent and
consequently may suggest [ruitful lines for action. When the
maodel is tested the character of the failure may somctimes pro-
vide a clue to the deficiencies of the model. Some of the greatest
scientilic advances have been produced by failure of a model!
Einstein’s work was the outgrowth of the Michclson-)ogley
experiment in which the aether model led to urnsnceesghuly pre-
diction. O
Another advantage ol model-making is that it jn"‘i’f}.g_s into the
open. the problem ol abstraction. The veal wordtlis a very com-
plex environment indeed. An ordinary apjz)l(:;“fm‘ exam)le, has
a4 great many propertics—-size, shape, colghychemical composi-
tion, taste, weight, ad inlinitun. In raking a decision zbout
the apple, such as whether to eat ip,m}‘not, only a few of these
characteristics are consicered. §(;n'i'ré degrec of abstraction is

necessary for decision, N ,
www dbralibrary org.in

The model-maker must, hierelore, decide which real world
attributes will be incorporited in the model. He mav decide
that the size of the appl‘@( rather than shape is important 1o deci-
sion. He may, if L i{se’tting up an inspection plan, concentrate
on the number ghgvorm holes. M he is interested in the velocity
of a falling apple; on the othgr hand, he may mclude only the
weight of théapple in his model.

By n aii'j‘ﬁg this process of ghstraction deliberate, the usc of a
mode'ls%y bring such questipns to light. Moreover, it may sag-
ge:s,r\:f Prefiminary experiments to determine which character-
Astics arc relevant to the particular decision problent under

\considcration_.

Once the prablem is expresded in symbolic language there 1s
the advantage of the manipulati\e facility of that language. The
symbolic language also offers ad{-':\mages in communication. It
allows a concisc statement of the problem which can bhe pub-
lished. Morcover, it is more easily inkegrated with the other
sclentific work which is also in symbolic language.
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Another advantage of mathematical models is that they often
provide the cheafrest way to accomplish prediction. Sometimes
it is possible to reach the same results by the sheer mass of data
—by a “brute force” attack on the problem—but the mathe-
matical Toute 1s generally more economnical.

Ongc reason for this is that a newly-minted Ph.D. in mathe-
matics can e hired (alas) for a salary which could not entice
a good plumber. A Ph.D., a pencil, and some paper may be dll
the equiptnent necessary to handle the symbolic manipulations
of the model. Only a very small proportion of the milliofiytur-
rently speni for research goes into modelmaking. .F':\‘(:‘."I} when
the scicotisis arc well paid, most of the moncy io{t::s mte the
process ol collecting data, )

Disadvaniages R

The usce of modcels also has some dra’t}backs. The model is
subject to thie usual dangers inhcrgnﬁ 4h abstraction. A mathe-
matically feasible Iﬂod\?,{,,%}}_ﬁ?;r.ggﬂg}.g}? gross ovemmphﬁcatmrfs.
There is no guarantce that an invest spfof time and effort in
constructing the model willpay dividends in the form of satisfac-
tory prediction. No pro{cqé:s, however, can provide such a guar-
antee, '\ W

The symbolic lafiguage is also subject to limitations. It may
be beyond thexgbility of a mathematician to manipulate the
symbolic la-lngﬁaé,re so as to obtain useful resulss. In such cases
It may }-’ﬁ\ﬁl\('}i‘(‘.-cﬂicient to use direct methods. In gambling-
Same pr.p;hiems, such as the game of solitaire, it may be easier
to Rl‘gi(-""gl large number of solitaire games and determine the

robabilities by the Direct System than to embark on a mathe-
mdtical analysis of the probabilities.

There is another very grave danger in the use of models, Alter
a scientist plays for a long time with a given modc.:l he may be-
tome attached to it, just as a child may become, 1m the cou]"sc
of time, very ;1ttachcci to a doll- (which is also a model) . A child
may become so devoted to the doll that she insists that her do.ll
is @ real baby, and some scientists become so devoted to thetr



172 DESIGN FOR DECISION

model (especially if it is a brain child) that they will insist thar
this model is the real world.

The same sort of thing happens with verbal models, as the
semanticists point out, when a word and its counterpart in the
real world are regarded as the same thing. This identification in
the world of words has led to unhappy results which are veflected
in the rcal world. The behavior of individuals who are tinable
to distinguish hetween words and the real world mav become
s0 bizarre as to lead to the classification “insane.” O\

Now things are not this bad at the sciencific level ey be-
causc ol the self-corrective [eatures of the sequental process of
model-making which provide a periodic return $6/Mic real world
after each excursion into the symbolic wr_‘;rldfg\flw test of the
model acknowledges, as it were, the supremnady of the real world.
1t the model fails o predict what will happen in the real world,
it 15 the model that must give wayThis is the standard of sci-
entific sanity. O

When this standard is not aﬁﬁlitted,l a conflict berween a
modcl’s predictions Wﬁ%‘&d’?{%ﬁﬁ})‘?}ﬁﬁgé’ "#n"the real world will
somcetimes lead instead to the rejection of the real world, This
course is the prelude todhisaster. To guard against such disasters
it is well to remcn@ef the following rule for working with
models: A model ishﬁeit.her true nor false,

The standardyfor comparing models is ugility, i.c., successful
prediction, Khe cvaluation of a model s thercfore dependent
on the sitwation in which it is to be used; it is not infrinsic (1.,
depengdent only on the model itsell). If this point is understood
several apparent paradoxes in science disappear.
...\(,)\ne such paradox is the simultancous use of two contradic-

ry models. An example of this paradox occurs in the field of
physics in which a wave and a photon model for light are both
accepted, Wave theories are used when they provide successful
prediction, and in other situations the photon theory is em-
ployed. Hence the paradox arises only if the models are identi-
fied with the real world.
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Another paradox Is the occurrence of scientific revolutions
which {uniikc political revolutions) do not interrupt the or-
derly devclopment of the area. If models are not identified with
the real world, the revolution 1s merely the substitution of a
refined waile] for a cruder earlier model. Most of the time the
older theorv continues to be useful in the original applications;
it is only in oxtended applications that the ncwer theory gives
better prediction. The older theory is often a special case of '
the new theery. This explains why, despite the revolutiogz\ir{
work ol Einstein, the older Newtonian physics is still uspe Int
designing a dam or bridge, for example, both modgl;{;‘f\?ould
lead to esseniially the same predictions {or in othcewerds, the
predictions are indistinguishable at the practicaldevcl) .

One clase of scientific workers does not worty about the test-
ing of its models. They are the mathemati’eiﬁs. Their only in-
terest {as long as they are functioning as\mathematicians) lies
in symholic derivations from the modélé. Their business is to
provide models in which the symbdlie’ implications ave worked
out—anyone who want¥ 10" T?.Wéhl'fffiéiéi"ﬁ)it“real worltd predic-
tions will have to test it first. Nevertheless, the mathematicians
serve a useful purpose in sGoiety (though a pure mathelmatici'an
would strenuously d t({?'.ft) by providing the scientists w1t!1
ready-worked models. Often the models created by mathemati-
cians are not 1.1seg1\’féf'years, or even centuries, but the literature
of mathematigg\is' a sort of Sears-Roebuck catalogue of models
which may d“consulted whenever a spectal type of model is
needed, .}%Qrtunately it takes some mathematical sophistica-
tion }Djﬁ‘der to use this catalogue.

AsMong as the model is completely divorced from the real
‘\%ld the criterion of utility cannot be used. Instead the mathe-
maticians employ an in{rinsic standard, consistency. .Various
attempts have been made, all unsuccessiul, to extend this stand-
ard to the real world. The only result which these attempts have
accomplished is to confuse matters and cause an identification of

models and the real world.,
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Role of the Model

The disadvantages inherent in the use of models can be
avoided to a large extent by a judicions balancing of the two
processes, model-making and data collection. The relationship
between these two aspects of Scientific Method deserves carciul
consideration; it provides onc of the main keys to scientific
success, and it also involves several notions which can be carkied
over into our thinking about everyday problems. The sation-
ship can be represented diagrammatically by Figure 1‘&{'}?
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The model itself slloglti:be regarded as arbitrary; it repre-
sents an act of creatio{] like a painting or a symphony. The
model can be any%ﬁg’its crcator desires it to be. In practice, of
course, it is generally stimulated {and thereforc affected) by
data from theepeal world (which is labeled “Original data” in
Tigure ]0.011?Artistic creations also use scnsory datia. Even in
abstract eafwases there is some influcnce from the original data
(sensgryvéxperience) . If the modern artist paints the portrait
of a&0man, it may not look like a human heing to me. Dut pre-
»sjlj\l'lab]y the dabs of paint have some relationship to the woman,
though it may require an expert o understand this relation-
ship. Similarly, a physicist's mathematical model of the atom
may be far removed from any material substance; again only an

expert can appreciate it,
In many cases the symbolic representation used in the model
is chosen because it was successfully used in previous models,
because it scems plausible to the creator, or because it is con-
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venient. Tlowever, some very useful models are based on as-
sumptiom which are not evident {rom common sense cr—as in
the quantui model—are actually repugnant to common sense.

I would not consider it very plausible to be scated at a desk
in Tos Angeles and then suddenly to find myself at a desk in
Baltimore. [t is even less sensible for this jump to have heen
accomplished in no time at all and without passing through
any intevinediate point in the process. Yet elcctrons jump
around in ihis remarkable manner in the quantum theorics/of
physics. Madlels which cmbody this curious behavior lead to
successiul predicrion. )

Scientists are generally pictured as coldly logicab
with no disposition to embark on wild flights of far cy. But the
geniuses ol science have at least as much  imagifation as any
other creaiive artist. In some respects the §}m\'ﬂb]i(: langnage of
science allosvs greater freedom for Cxprgﬁ«s}oﬁ than the printed
word, musicil notation, or oil paint. H

There is one very important rgspect in which the scicntist
differs from the artist, ROwerpraiasnogsliitsclf may be arbi-
trary, but once It is cunstn.u;petifi’t must meet exacting and care-
fully specified tests before it acclaimed as a masterpicce. In the
artistic world the (;;riu%@u, Yor judging the finished product arc
vague and unsysteniatics

There 15 a SL‘.(IELT\T(’]."I"CSPCC[ in which science and art d%ﬂfer. In
art the portraig\is the end of the job; in sciemce it Is ]ust.the
beginning, @nte the model has been created there are two lines
of da‘.vcrlr,ﬁﬁ%érlt—()ne in the symbolic world and the other in
the re;t].’ Xﬂ orld.

hﬂérﬁe symbolic world the implications of the model are pur-
sued by manipularions of the symbolic language. If I am inter-
ested in clic behavior of a pendulum I cansctup a mathematical
moel in whicl the bob of the pendulum is replaced by a geo-
metrical point. ‘The cord or arm of the pendulam is replaced by
asymbol. 7., which can be interpreted as the length of the cord.
The Newtonian laws may be applicd to this model and, by

manipulations of the symbelic language, I may derive as a con-

sreatures

)
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sequence of my model a relatively simple relation between the
period (the length of time it takes to complete a full swing) and
the length, L. All of this takes place in the symbolic Tuiguage.

In the real world the numerical value for the length must
be obtained. This quantity, L, is often called a “paramcter.”
The word “parameter” is merely mathematical jargon for a
symbolic quantity, such as L, which may be associated with some
measurable quantity in the real world. The pracess of maecasin-
ing the length of the cord “ould therefore be called the \etcr-
mination of the parameter.” In most problems Lhers will be
more than one parameter involved. “\

The two paths from the mode] now join agam when the nue
merical value from the real world is substltuteli i the formula
(derived by symbolic manipulation) in pider to obtain the
period. The period is found, mathematwa}l’y to he pwr;mL ional
to the square root of the length, Ly I} my pendulum is 4 feet
long it is easy to calculate that tll{:’f;)ei"iod will be abous 2.2 sec-
onds. This statement is madc as &predlctlon

In order to test LHY(“{::E‘EEEHH%‘I‘?TR K& Beessary to return once
again to the real world. Fsét up my pendulum and time the
swings. I find that the perlod as determined experimentally is
about 2.2 seconds Pérhaps I go ahead and try a whole scries of
different lengths B‘ld the agrecment between prediction and
experiment seem to be good.

Asa consequencc of this agreement, I am encouraged Lo use
my matherfatical model for prediction purposes and also in the
desigmot’ clocks or other cquipment which utilizes a simple
pendulum

{The reader may find it worth while to consider another ¢x-

\ample such as the astronomical model of the solar syster, and
trace through the steps in Figure 10.01 in order to clarify his
own ideas on the role of the model.

One striking characteristic of the relationship between the
model and the data is the periodic return to the real world
which is indicated in Figure 10.01. 1t should be noted that the
original data used in the construction of the model may be
quite useless for the determination of parameters or testing the
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model. Hence the return to the real world may not mean merely
the collection of additional data, but it may require collection
of data of 2 rompletely diflerent type from the original data.

Now a reader who has forgotten his elementary physics may
have wonderid why I did not include the weight ol the bob
aswell as the length of the cord in the model of the pendulum.
An interesting feature of the mathematical model of the pendu-
lum is thai if this additional factor, weight, is included in the
symbolic siructure, it will cancel out in the manipulationsg oy
other words, the model implies that the perlod of the pcnduTum
does not depend on the weight of the bob, i.c., the weight is
irrelevant in this particular problem. The same thi nghappens
if other factors, such as the way in which the pmdulum is set
into motiorn, arc included in the model. T}{us the symbolic
model has served the useful purpose ol fo{mmg our attention
on the lengih of the cord. It has thereforesuggested an efficient
way of experimenting on the pendulum the model has told us
what data need to be collestedn aubikrary o

The littte story about the pendulum hadga happy ending, for
the model was satisfactory. Hwever, few scientists are so fortu-
nate or clever as to demse\a useful model on the first attempt.
If prediction from the ‘ﬁ\?st model tarns out very badly the scien-
tist will have to starg wver again. The way in w hich the predic-
tions break dowssometimes provides valuable information
which can be u'\ed to construct a second model.

The 1ol \Qf t|1t‘ model as Q;lVf:I‘] by FIgUTC 10.01 is therefore
only a pdrt ol a larger sequcntial process. This sequential role
is 1ndlt\&t(‘d by Figure 10.02.
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The evolution of a successful model generally follows the
above pattern. The fist shiots are often very wide of the mark,
but by gradual stages the scientist zevos in on his target. There Is
really no ¢nd to the sequence. Even after a model las vears of
successful usage (i.e., Newtonian models in ph ysics). a situation
may come along which will not be adequatcly predicted by the
model. A new model must then be developed. ~

Some readers may find this viewpoint rather unpleasant be-
causc they would like this sequence to stop soxnexx'hf\’r"e,\(i.e., at
the truth). Nowhere in the scientific world has,thi stopping

place been attained, although now and then, i moxlels have
survived for many years. The attitude that €he nuth had been
attained was often a barrier to progress. \N%
o
R
A Model] for Data PN,
The mathematical model fefy the solar system or for a pendu-
lum can be uscdd@mpb&‘éﬂ@ﬁé&i-}a@ﬁg_mcn tested against actual
data, In this test it is naftéxpected that the data and prediction
will agree exactly. In{the pendulum example the predicted pe-
riod of a 4-foot p,(:ﬁzh.tlum is 2.2 seconds. If a 4-foot pendulum
1s constructed éhq}i"thc period is measured with a smp\\-“a.tch or
other timing t:;it‘.vicc, the periods so measured will be about 2.2
seconds, Putthere may be some departure [rom this figure.
I\'t}'.t{fg,\ﬁat thesc departures of the data [rom the predicted
-a&@hawe veccived no allowance in the mathematical model
farthe pendulum. 1n order to evaluate the model. lhowever, this
:}.Tklmvior of the data must be taken into consideration. This
may be done intuitively by an argument such as “the departures
from the predicted value are very small and quite mfgligible for
practical purposes.” A morve sophisticated approach is to set up
a second model, a model to deal with the measurement data.
Such a model would be a statisiical model; it would chara¢
terize the measurcment process itself in mathematical terms
Qne parameter of this model might be interpreted as the preci-
sion or repeatability of the method of measurcment and this
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might be estimated from new data collected for this purpose.
Many scicntific measurcments are given in the following form:
992 + 0.10 seconds. The number after the plus-and-minus sign
relates to the precision of the measurement. Thus 2.22 might
be the average period calculated [rom a series ol measurements
on the peried of the pendulum. The 0.10 second might indicate
that the average is only reliable to ¥, of a sccond. We would
not be very surprised, therefore, if we had gotten 2.32 or 2.12
seconds as our average period. Gonscquently, there is no reasdin
to feel that the data contradict our predicted value of 2.27sec-
onds. If, on the other hand, we had [ound the avera%@g{:riod
to be 3.22 .2 0.10 seconds, we would feel that sométhing was
wrong cither with the model or with the data. N

When we set about constructing a mathemakic‘al model which
will describe data we immediatcly are comfronted with the
problem of including, in the mathematigal formulation, the
wellknown inadcquacies of data. ':I.flius the inadequacies of
the measuring instrurm:\r}‘g‘xp(}ts? Sﬂﬁ).:ézl‘r in the model: it must
include such things as s:sns}jry T,l%pse‘s%}f'(t)ﬁ%'lﬁuman measuring
instrument; vavious errors introduced by the inanimate instru-
ents as imicroscopes, teI.cSéopcs, or clocks; and, in biological
work, where an anim ig’ﬁsed in the measurcment process, all
sorts of additional sehrces of variation due to the animal.

Then there willbe incompleteness of the data due to the
various steps inj\sibStraction. Some of the data may be irrelevant;
some of i} .ﬁ}é[evam factors may have been neglected. Also,
only part{oF the available data may have been collected and
only paQ:tfﬁl' this data actually used. In short, any real data will
b Tﬁéldk.‘quatt‘ and incomplete, and these deficiencies must be
incltided in the model.

It would be hopeless to try to catalogue all the thinlg:?, which
might ¢o sowr in the process of collecting and utihzmgf,r the
data, 1o analyze all of the factors which might operate to 1rl1ﬂu-
€nce the cxperimental resalts. About all that is Possi ble is to
consider broad categories of deficiencies and to include these

broad categories in the model.
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Now how can thesc inadequacies, and the resultistg uncer-
tainties, be handled mathematically? As you might suspect, this
is accomplished by the introduction ol the concept of probabil-
ity into the model. In fact, the notion of probability can be re-
garded as the distinguishing fcature which sets statistical models
apart from other mathematical modcls.

Statistical Models O

"The role of a statistical model is in many respects gy’ simi-
lar to that of any other mathematical model. The diagram-
matic representation is indicated in Figure 10.03 3
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The gambling, gdule models which were introduced earlier
arce instances of\statistical models. Occasionally a simplc model
of this type cam'be applied to situations in cveryday experience.
Suppose t 1%1}\1 am interested in the proportion of male babies
in 10,000, £¢cords of live births. There are two outcomes possible
whep\baby is born (just as in a coin flip) —the baby can be a
boyor a girl. I might therefore think of sex determination as

méﬁalogous to the process of Hipping a coin.

* One distinction between the coin toss and sex determination
is that while the mechanism for determining heads and tails on
a coin is fairly well understood, the corresponding mechanism
for fixing the sex of a baby is not well understood. Conscquently
it would be specious to argue that cach sex was equally likely.
There is, in fact, a large amount of data to show that this is
not the case. Hence il a symbol, #, 18 used in the mathematical



MODELS 181

model to indicate the probability that a baby will be male, it
may not be zssumed that = 1,/2,

Conseguecntly, one of the things that will have to be done in
order to 1132 the model is to obtain data which will enable us to
estimate the value of this parameter, . Perhaps a number such
as p = 0.52 will be determined from this excursion into the real
world. )

A second ~hain of reasoning stays in the symbolic world. Taks
ing the probability as ¢ that a live baby will be a boy, we piust
answer the guestion: What will happen in 10,000 births B will
not burden vou with the manipulations of pmha]giﬁ,];iés re-
quired to answer this question. The mathematics‘ifyvolved in
calculating the probabilities for cach of the 10,[}0‘1)ossible out-
comes hecomes too tedious, even for a statichjan, and in prac-
tice a mathematical approximation whic]{".)ﬁclds useful results
with little ¢ffort is employed. \$

With the aid of this device, ana..'substituting the value
= 0.52Z, we can obtain a rgdicti%t’g QE th_c following form: The
probability that chere“’x‘«”r’g’l DBt aeR &0 and 5300 male
births in the sample of 10,000 s equal to about 0.05. In other
words, il I am convinced.that the model is a good one and that
my value of p = 0.52 is':zrﬁ;o reliable, I would be very confident
that the actual datshould show between 5100 and 5300 live
male births. &

This particniai* model has taken into consideration only one
source of v:eiﬁ:ibility in the data on live birth—the variation
due to’saihpling. Now in practice there are a number of other
inadequiAcies of the data which might very well cause trouble.
qt.\; réporting procedures may introduce difficulties. In a well-
ruf{ department of vital statistics in the Western W orld the tabu-
lation ol birtls may be done rather carefully. On the other hand,
if my 10,000 live hirths were reported by tribal chieftains in 2
colonial administrative district there might well be a tendency
to forget female children.

The problem of evaluation of the statistical model is a tricky
one. If I found 4957 boys in the sample of 10,000, I could not
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say that this result was émpossible insofar as my mode] was con-
cerned. The model itself allows a very small chance of this sort
of sample.

To a large extent the users of nonstatistical mathematical
models can dodge the problem of evaluation by muking the
evaluation intuitive and simply stating that the agreement of
prediction and data is either satisfactory or unsatislac Lorv In
statistical models one must come to grips with the prol A —
though I shall postpone this topic for discussion i Chaphér 13
A major part of a statistician’s job Jies in the no-mafi'sand be-
tween the symbolic world and the real world, angh }p pariicular
he must evaluate the predictions of models Ie“l(itl\c te actual

N
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Summary o\

The key role played by models il s\ucnrlﬁc thinking fs illus-
trated by several examples. Tllg fotion of a model for data is
introduced and leads to the wr]uept of a statistical model. The
advantages and disah ‘ﬁﬁléna 'Bfan%%fﬁs are considercd. Special
stress 1s laid on the dlstlpcuon between models of the real world
and the real world itsells
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CIIAPTER 11

SAMPLING

Samples U

The data wlich will {form the hasis for practical dectiﬁfoﬁ% may
be incomplete, unreliable, or inaccurate, Consg@cﬁaﬁntly the
model representing this data must somehow peflEct these in-
adequacics. [lhis raises the question: How ’c,s'm\il mathematical
model (which is precise and consistengybe used to describe
something as confused and crratic as datq}} i

The statistician’s answer to this quiestion brings in a concept
which has heen merltiUr‘f‘i‘.‘d“ﬂ%}é‘?b‘[ﬁﬁ%‘lli&l&nl'1as not received
the attenition it deserves. I ami Yefcrring to the notion of a
sample, a bread-and buttergword to workers in my particular
trade. O

Formally, a samplg‘is\s\lmply a part, or subset, of an aggresa-
tion of individuals¢htritatistical jargon this aggregation is called
& population oy hiverse. The simplest sort of population is a
finite collecriogof individuals, such as a deck of cards or the
students iga “lass in school. A sample from such a population
would hva group of individuals selccted from the larger group
‘ha’hfif-\l’ge hand, or those students whose last names start with
theSetters A (o M.

Now there is nothing novel in this notion of a sample, Peoplc
have madc decisions on the basis of the information in samples
%ong before statisticians arrived on the scene. People were judg-
ng a bunch of grapes by sampling a {ew grapes or accepting
Merchandise by examining a portion of the shipment beff)re the
advent of civilizations. The congribution of the statistician has
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been to systematize these intuitive concepts and convert vague
general advice into a specific methodology.

People have long been aware that the information in a sample
is nccessarily incomplete and that if a person relics on this in-
formation he will occasionally make decisions with unpleasant
conscquences; a sample of merchandise may be gocd, but the
shipment may be of poor quality, All of us have enc ountered
what might be called the “fruit-stand” effect—the goods g dis-
play (i.e., those which can be conveniently sampled ghnally)
are not representative of the goods which are acLuallV\soid The
vendor has arranged his stock in a deliberately deceptne fashion
or, in technical parlance, he has provided 1Is with a blased
sample. "‘.\

Fveryday experience has led us to sugh concepts s a fair
samp]e or a representative sample, and\\thr,:,(, phrases often ap-
pear in daily conversations. In eve?yda\ usage these phrases
have a vague and often ambigudu® meaning, so the fizst neces-
sary stcp is to try to clarify thé§e ideas. When this step is taken
the next problem “i§to d?é@%’}@‘?ﬁé’tﬂ‘&is which will lead to fair
or representative sampless”

o

Populations | »

Before we con\écr these questions, however, I wani to indi-
cate how ther concept of 2 sample can be used in constr ucting a
modcl for data The gencral procedure is to consider that any
actual set/of data represents a sample from some popilarion.
This%bcedure may best be illustrated by some cxamples.
Suppose that a new drug which may be useful in the treat-
~ menr of some specific malady is developed. An cxperiment 13
\ designed and carried out in which half of the paticnts who are
diagnosed as having the specific malady are given the new drug
and the rest of the patients in this category are given some
standard therapy. The experiment runs for, say, a year and at
the end of this time it is desired to come to some deeision about
the new drug. This decision is to be based on the data in the
experiment,
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The patients who were given the new drug represent a sample
of the poprlation of patents with a given diagnosis who were
available during the time period of the experiment, Let us sup-
pose that the patients were assigned to the therapies by the use
of some randomization mechanism, Then, hypothetically, there
would be a large number of possible assignments, each of which
might have led to a different experimental result from the one
actually obscrved. So we can consider our actual data as one

sample selected from many possible samples. O\

In a larger sense the entire papulation of patients specified
above represents a sample from a superpopulation. The p'alf,t‘izfu-
lar vear in which the experiment took place can be vipwéd as a
sample drawn from a population of years. Moreoventhe patients
coming to a given hospital may be regarded as asample of the
patients in a locality who suffer from the,spéciﬁed malady.
These patients, in turn, are a sample from’}he population of
the counery, Therefore the set of obsgrﬁﬁtions in the experi-
ment can be viewed as a san‘}l)le fromia number of wider and
wider populations. A 'dbl:é'{'m’lhrary'org'm

This illustrates the principle ‘that any set of data can be Te-
garded as a sample from a L)gﬁlllation (or even from many pop-
ulations} . In constructi u'\ﬁ~~fn0del for data we try to represent,
symbolically, the probabi ity that our sample would be drawn
from some populatien. 1f a randomization mechanism is used
in the process o.t"j\i}fawing the sample, we may be able to use
models quitc\{fﬁfﬂar to the ones discussed earlier in connection
with gambling games.

Since I have indicated that a given sampl
as i 'ﬁi;:lg"b(:cn drawn from any of several populations the ques-
tion Waturally arises: What population is used in the model?
This qliestioﬁ docs not have a simple answer because it depends
on what general information is available, how the data wcre
obtained, and what courses of action are open fo us. It the
choice of action lies between a recommendation that the ncx-\r
therapy be used routinely for patients with a speciﬁed diagnosis
in g given hospital and a recommendation that the new drug

¢ may be regarded

QY
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be dropped, then the population affected by these courses of
action would be the patients coming into the given haspital in
the future. We might regard the patients in the experiment as
a fair sample of the population of paticnts coming o the given
hospital.

On the other hand, we might want to make a recommenda-
tion which would apply more gencrally, and in this event the
population which might be affected by the recommendation
might include people in other hospitals in the ciz{, ) even
people in the rest of the country, or, conceivably, @i the world.
Notice, though, that the wider the populatio@;fkhc more diffi-
culties we might have in justilying 1o others ffnd to ourselves)
that the experiment represents a fair sampl‘q\o_lf the wider popu-
lation. In particular, past expericnce Qa}' have shown that the
nature of the malady differs from orfelsection of the country to
another. In this event it migh{\De" mislcading ro regard the
sample as representative of the papulation in the connrry, The
use that can be made of inlopmition in a sample will depend on
how the sample 1\3!‘3\1:!:1%1}335;{( "this; 1% turn, aflects the choice of
the hypothetical popu,]a‘tiﬁn.

Iypothetical popilations, while convenient conceptually,

Jead 1o some d'\f?@:{ﬂt problems, If T flip a coin ten times the

results of thiglittle experiment can be regarded as a sample, 2
sample of \pOsible tosses of the coin. However, this latrer popu-
lation i..ﬁo.Qot finite since there is no limit to the rmunber of ¢oio
toss S:")ﬂ’t.hougl'l it is a lictle harder to say just what we piead
1'}Y'~'§srample from an infinite population, the mathemarical

,&fl,éory is gencrally casier, and most statistical theory deals with
~such mfinite populations. 1T'hus we frequently regard a series of

measuremnments, say heights, as a sample from an infinite popu]a—
tion even when the populations affccted by our actions may, 1
laci, be finite.

Fair Samples
The concept of a fair sample ariscs in everyday expericnce
and 1s fundamental to the whole concept of sampling. It will
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therefore pav us 1o examine closcly the meaning of the words
“fair ssmple.” T'o do this let us return to the fruit-stand vendor
who puts the choice apples in his display and serves his cus-
somers out ol a hox containing the remaining apples. This we
fecl is a very unfair business practice, but when we try to point
out just what is unfair there are some difficulties,

Suppose that the froit vendor is so upset by our allegations
that he sclects his sample of fruit as follows. He assigns a number
w0 cach appic in the shipment and writes this numbcr on a slip
of paper which he puts in his hat. He mixes up the slips, and
draws, say, one hundred slips. He then pats into his display
those apples whose numbers have been drawn. It mgy.tufh out
that, although 10 per cent of the apples arc rogtgnndll of the
apples chosen for the display are good. !

1s his sample a [air one? You might feel thfti;‘ih‘é display is still
not representative of the rest of the applesyand hence must be
branded as unlair. Perhaps you would feel that about 10 per
cent of the apples in the display muitibe rotten before the dis-
play sample could be junTt’g‘%H'flﬁﬁm?bmW'm'g'm

The difficulty with this critérion for a fair sample is that it
requires a knowledge of t];u{populafion before the sample can
be judged. In practice chburse, we rarely know the nature of
population {for if we}id we would hardly bother to take a
famnple) so that g]r\[é:“criterion cannot be applied. Hence, any
standards for ;;{ail‘ sample which depend on a comparison of
the sampleyfith the population being sampled will be of no
practical y§es The way out of this impasse is to consider that the
desigqa&i@h fair relers not to the particuiar sample but to the
mgf‘itgd ‘used in drawing the sample.

fus if a vendor selects his display
mechanism and happens to get all good apples in the display
sample T would regard this sample as a fair one. 1 would take
this attitude because T think that the method used for selection
Is a fair method.

The question then arises: What isa fair method of sampling?
The pProblem occurs quitc often 1n EVET}fday affairs. There may

fruit by a randomizing
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be a group of people, and it may be necessary {or orc of them to
undertake some chore. A common solution to this problem is
to draw lots or use some other randomization device to draw
the sample (i.e., to select the individual who will have to do the
chore) . The use of a randomization mechanism gives cach indi-
vidual in the group the same chance of appearing in the sample,
and consequently this method is generally considered to he fair,

The same idca, translated into the language ol probabhity,
is basic to much of the statistical theory of sampling. The above
method of selecting an individual to do the chor€ )3 called a
simple random sample in the trade. The word fraitdom’ refers
to the mechanism employed and the word ‘inplc” is used to
distinguish this method from more comp"lax methods which
also use some randomizing mechanism

Note, too, the relationship betweénra fa1r sample and the
concept of freedom from bias whu:h was discussed carlier in
connection with data. The suenmt who picks and chooses his
data sc as to demonstratc a )eL theory is not using a method of
selection that gives FARTY 1tt;ms ofaglg %m same chance of appear-
ing in his sample (i.e, ‘the actual matcrial to be used in this
argument). Statisticidns usually use the phrase “unbiased sam-
ple” rather than\®n sample.”

Repeatdblhty

\Vhile,&ur sampling methods are desirable, there arc other
characteristics of sampling methods which must be considered.
Su]:q‘;%e that some administrative decision requires informa-
tltm about the commercial peach crop in a locality. Previous

~ experlence may Indicate that the easiest way to obtain this in-
formation is to estimate the number of fruit trees in the area.
It may also be known that there are 500 commercial fruit
growers in the area and (to take an extreme case) that there
is one hig grower who has as many trees as all the other growers
put together.

To obtain the desired information quickly and cheaply a
sample of, say, b0 growers would be interviewed, and the trees
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reported by tiresc growers would be totaled. This figurc would
be blown up: by a factor of 10 to obtain an estimate of the total
number of trees in the area.

But if we take a simple random sample of the growers we are
immediately in trouble. 1 the big grower appears in the sample
our estimatc will be much too large. On the other hand, if the
hig grower docs not appear in the sample our estimate will be
much too small. In other words, a simple random sample will
always give 3 very poor estimate here. O\

The obvicus thing to do is to put the big grower into agclass
by himsclf znd include him automatically in the sample. A
simple random sample of the other growers could?/be taken,
their total inilated by a factor of about 10, and.'ﬂ}is number
added to the reported total of the big grower i{ order to obtain
an estimale. D

Since there might well be disparitiesjij}hc sizes of the 499
smaller orchards, it could be argued ;lfat‘ the same principle of
lS:paratiO:[:l- oughF to be ‘ggellh%qa&)lhtgé 4{?}9 _(i:;E.I'lers. Tl?is ‘could

¢ done if, as might well be thegase, e Bvdre acrcage figures
for all farms in the locality. Tiic'g‘rowers could he classified by
the acreages of their fam}&,(;md each acreage class (or stratum}
could be considered sa@{fa?:ely. This method of classilying and
then taking a randets sample of each class is called stratified
tandom sampling &id is widely used in practice.

With this me‘{hbd it is no longer necessarily true that all in-
dividuals 11\11\11 population have the same chance of appearing
in the sqrﬂiﬁe. Nevertheless the method can be a {air vne if the
resultsfrom the different strata are propexly combined.

I);w in what wav does stratification improve the estimate of
the umber of pe;ich trees? To answer this question we can
Imagine that the simple random sampling and stratified random
sampling methods were both used repeatedly on the same popu-
lation,
estimates which were cither

In other words the cstimates
onld be scattered over a wide

The simple method would give
much too high or much too low.
obtained by the simple method w
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range. On the other hand, the estimates obtained by the strati-
fied method would be much less scattered. We therelore say that
the stratified mcthod gives better repeatability or concordance,
Il we have a choice among various fair sampling methiods we
would want to choose a method which gave good performance
by the standard of repeatability.
Economy S\

It costs time and moncy to gather data and, in praaiiﬂse, cor-
siderations of economy are important in the choics of a sam-
pling method. In the peach tree problem wegnight find that
the big grower did not know how many trees he owned. In this
case we might try to cstimate the numbet¥gl ‘trees on this large
farm by a sampling method. 'Thus the arm itsclf would be 2
samplc, and we would he samplmg n‘fi\h a sample, 'Fhis device
is called sub- -sampling. *

In certain practical situations (such as when we weant o take
a samplc of records ﬁr!o L 2 ﬂﬂ\m there s still another technique
which may proxflci\:e“;ﬁbsrdﬁ]tlal sav mgs %t time and money. This
is the method of .S)J?t(,mafzc sampling.

A systematic sampic 18 one which is drawn by a carelully pre-
scribed process w%ufh docs not include a randomizing mech-
anism. A systematic sample of a card file could be obtained by
a rule such ds’ Pull every twentieth card in the file. A systematic
sample of\hous,eholdb could be drawn by a rule such as: Jnter-
view, thig People in the house closest to the northwest corner of
cacl"b}ocl\

S‘vsrematlc samples have a number of advantages. 'They are
genela]ly casier to take, and hence the survey will be caster to

\ administer. For a given number ol observations the 5}5terllatlc
method may provide greater repeatability than a simple random
sample. However, systematic sampling is not always a [air
method.

In sampling houses, [or example, the rule mentioned above
will lead to the selection of corner houses most of the time. In
some cities corncer houses are subject to double taxation, and the
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owriers of such houses are in 2 higher cconomic class than their
neighbors on thie block., Wealthier individuals tend to hold
mere conscrvative political opinions, so 1f we were making a
public opinion survey the use of this method might put a bias
into our results,

This sort ol bias can sometimes be avoided by combining
systematic with random sampling, i.e., constructing a method
which gives svsteratic selection up to a point and then uses a
randomization device to pick the actual sample. In the theoryy,
of sampling various combinations of the devices of systematic:
stratificd, and random sampling have been explored an'djg{f'alu-
ated with vespect to freedom from bias, repeatability, and ‘econ-
omy. Very complicated schemes have heen dcve]opﬂ?ﬁo handle
special problems—say, a sample of the entire Jopu]ation of the
United States. One of these methods is arca/sa pling whiich is
used by government agencies. This rnetl}cd,\dties well insolar as
frecdom {rom bias and repcatability arfceoncerned but, unfor-
tunately, rerids to be rather ex ensi;t-‘é’,;

In praciical ap}')licati\(\;‘ﬁ’&‘s‘!%u??l%f%‘ffg‘ysﬁléﬁim problems arise.
How can a population ol fish™in the occan be sampled? How
can flies, mice, or rocks bt;:.é{lmpled? How can migrant workers,
$mog, or grain in a ir ig‘:hf car be sampled? The topic of sam-
pling is 2 very broadhgne indeed.

Haphazard S{fu}mlcs

If a pers ﬁ\iq asked to choo
nine, the@hswer he gives is a perso
diff@l‘.f-‘ni"i'l'!atter from the selection of a pumber by a random-
izafidirmechanism. Even though the individual might feel that
he Bcked the number at “random,” his choice would not be rap-
dom in the sense in which I am using the word. In fact, it is well
known that numbers selected in this personal fashion tend to
be odd numbers such as three or scven.

I prefer to call a sampling system invol
choices a haphazard method and limit the wore
methods which employ a randomization mechanisim.

se a number between zcTo and
nal choice. This is quite a

ving such personal
ord “random’ to

Q
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Haphazard sampling methods provide us with wost of the
data which we have, not only in everyday life, but in science as
well. Even if the sampling methods previously discussed are
used, part of the selection may be haphazard. Thus if questions
naires are sent out to a random sample of people there will
ordinarily be scme individuals who do not return their ques-
tionmaire. Personal choice has therefore entered the sclection
of the sample. However, curvent sampling techniques stadve to
make the influence of personal choice as small as possibl¢.

Thesce remarks are in line with earlier comments@y'the prin-
ciple of minimizing the reole of the human irgsﬁt;maent. It is
very much easier 1o study the characteristics pf2a‘randomization
device than to learn about the corrcspondiﬁé chavacteristics of
personal choices. It is always a difficule matter, for example, to
determine whether or not a haphazazdZmcthod is hiased.

A classic example of a haphazaxdysample is the presidential
election poll of 1936 conducted\by the Literary Digest. Over
10,000,000 straw ballots weresént out and of these 2,376,523
were returned (a Véry %TfangT}sfgraﬁﬁl(ggﬁaeed). The results indi-
cated a Landon landslidé¥(370 clectoral votes for Landon), but
Landon secured just & electoral votes in the actual clection.

The trouble aﬁré‘e.becausc individuals in the lower economic
classes had verplittle chance of appearing in the Literary Digest
sample. "\'Tl%ﬂ\'é'.[‘he later public opinion polls attempted to avoid
the methodsiwhich led the Literary Digest to disaster, they con-
tinuedztovexhibit a similar, but smaller, bias. This persistent
bia;s;}dfé large enough so that in the close election of 1948 the
“‘stientific” poll takers were unanimously wrong in their predic-

£\
AUnns.,

Y

I 'want to discuss the reasons for the 1948 debacle briefly be-
cause anyone who accepts the principle that the proof of the
pudding is in the eating might consider the failure of the poll
takers as evidence that there is not much in sampling theory.

The point is that public opinion polls conducted by private
organizations have continued to use haphazard methods for’
drawing their samples, largely for rcasons of cconomy. The
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actual method employed is called quota sampling. In this
method the person collecting the data, the enumeraior, goes to
some public place such as a bus station or railroad depot (ks
choice) and then picks out people (again his choice) in various
age, sex, racial. and economic categories. The quota method is
therefore a haphazard method—although this point has been
concealed by [ancy statistical formulas and scientific double
talk,

The majority of sampling experts have been pointing out fer
a long time that the quota method is riddled with biases and
that the estimates of the reliability of the method wer;;;uﬁduly
optimistic. What is more, the estimates of reliabiligyfailed to
take into account several important sources of c;&:@}r‘x-vhich arc
not simply sampling problems. For examplespiiblic opinion
is not static so that, even ib percentages arg’correct at the time
that a poll is taken, the situation mag be changed by clection
day. Several studies of the polister’s tedhiniques were made prior
to the 1948 clection and the vasipus deficiencies were duly
noted. Despite these stﬁm\é’s;dtl?i@,‘g%h'fﬁf’é‘ré“iﬁiw seemed to realize
the limitations ol their methods after the election of Truman
in 1948 and the resulting Well-deserved horse laugh by the
public. \’

I do not want tojgive the impression that haphazard samples
are uscless, Quir@etien the only available data for a decsion
are collected jq{a’haphazard manner. The mathematical models
developed f@}:’rarldom samples are frequently the only models
availablé ¥ that in practice one has to use such models for
haph;@h’fd data. But the user roust proceed with caution an‘d
ﬁ‘?@hﬂ’ Ty to appreciate and investigate the limitations of his
methods,

Sampling Models
Now we are ready to return to
a model for data. The three concepts

sample, population, and sampling method.
The first step in setting up the model is to regard any collec-

the problem of constructing
hich we needed were
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tion of data as a sample [rom some population. The second step
is to try to specify the population. This slep 1S a creative one,
We start with past experience concerning the population sam-
pled (or similar populations) and try to charactcrize this popu-
lation symbolically. It may vequire considerable ingenuity to
consiruct a mathematical model for this population. The un-
known characteristics of the population swill appear in the
model as parameters, \

The third step requires the [abrication ol a second Wodel—
a model of the sampling method. If the method{Of sampling
is one of the standard metheods, the model w.il](‘}iij available in
the Qiterature. If a haphazard method of sampling is employed,
the construction of the second madel may bé‘;} diflicult problem,

By putting together the model of thas population and the
model of the sampling method, and, by mianipulating (he sym-
bols, it may be possible to deriyethe probabilities associated
with the various possible samples’rom the populadon. If the
sammples fall into classes, it wiy also be possible to derive the
probability that a\«észﬁﬁi)é‘ikﬂl}f‘iﬁﬂ&’-?ﬁ%é“a given class,

The actual L?t_)llstrl.{q}it;ri'of a model for data will depend on

threc key factors: A

£ )

{1} What wc\k:ﬁbx-v from past experience (or arve willing to
assum.t.e):.about the population sampled, i.e.. cur previ-
ousyiilbrmation concerning the subject field ol the par-
tieutar data.

(2 (What we know (or are willing to assume) abour the

. .;'\ sampling method, i.e., the way in which we obtained the
08" data,
\"\;"’ (3) What we want to decide from the data, what we want
to say or do on the basis ol the data.

These principles will be illustrated in the next chapter when
we will use them to construct a statzstical model for measurc-
ment data.

The introduction of the concept ol a sample enables us to
construct models which will exhibit propertics analogous to the
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properties of dati which were discussed earliet. The incomplete-
ness of data is intrinsic in the very notion of a sample. The
biases of daia are closcly associated with the method of sampling
and the populations involved.

The repeatability of data is tied to the repeated sampling of
a population. In the peach tree example it was pointed out that
repeatability depends on the sampling method. It should be
noted that the repeatability also depends on the population.
If, in the peach tree ¢xample, all of the orchards were of ihe
same size {a characteristic of the population) it would }I}\ék‘ﬂ\
no difference whetlier a simple random sample or a §;ﬁatiﬁe(i
random samiple were uscd—in fact, haphazard metha@ls"Would
also give good estimates. The lack of rcpeatabilit}[r\iﬁc"., the vari-
ability, or scattcr, can be regarded as arising partiy from the
population and partly {from the sampling rqc!ﬁ@a, and there are
methods for partiticning the variation, JFiese methods are dis-
cussed in Chapter 14. .

The elaboration of the concept of’;llsample is, in My opiniomn,
one of the main contril;‘{m‘(yjﬂgtgﬂj ifiEasiaetgitians. Without this
concept, a method for nlak,ill‘g:&ecisions from data soon runs
into wouble. In the olderforins of purc logic, {or example, the
theories of induction l(iclfed the concept. A favorite example
of the early logician$was the induction that ail swans arc wh%te.
It was based onyadprocess of enumeration: This swan is white,
80 is this ('JI]G,'Q%FIH o on. Therefore all swans are white. The
example \-'fi’f{}ii‘opped from logic texts when hlack swans were
evemu;J_Lh?\}iswvemd_ The difficulty arosc because the popula-
tion.“’féﬂ'ﬁns sampled was the PUP“]ation ol ?‘;UTOPEE‘H swans
"@lr&-‘“ihe population of inference was much Wlffl(-:r.’ .

“liis same type of Eallacy is encountered daily 10 print, on
the air, and in conversations. Ip fact, some pcople have been
s0 impressed by the persistence of this particular falla.qF t_:hat
they ¢o to the other extreme and insist that all generalizations
are false. Generalizations are useful in making decisions. how-
ever, cven if they may not be strictly true. What is necdedl is
a method for arriving at generalizations which can be used Lor
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practical purposes. The application of the concepls of sampling
allows us to make generalizations of this type.

Summary

The concepts of sample, population, and sampling method
are discussed. Some sampling techniques which provide falr
samples are mentioned and a contrast is drawn hotween these
methods and haphazard methods. Consideration is given (e the
way in which sampling concepts can be used to providdaynodel
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Models for Decision ~\

The model for Statistical Decision which I pr,e.iéntéd in the
first ferw chapters of this book described a deciS‘ibn situation in
which only a limited number of actions was)possible and cach
action had only a few possible outcomes/ZH you think back to
the car vs. bus example of Chapter 24D will recall that there
were just two actions and only threiz.]:iossihlc outcomes: home
early, home late, and accident. If‘i’\ﬁé wanted to construct a more
realistic model of thg%‘&%?ﬁg BETALEEE e might consider a
finer classification of tramit"fihes than early and late; i.c., we
might wish to consider{thc measurement of transit times in
minutes. \x

I{ we do measupe transit times in minutes, there will be a very
large numberydP Possible outcomes in place of early and late.
The transit ,t'iiné might take anywhcre from, say, twenty minutes
to six hufidred minutes. At first glance it might appear that
this trgtﬁ&ﬁt_;ﬂ from classifications of transit times to mcasure-
Inqll\tﬁ.';(and the corresponding increase in the number of out-
€onds) would have the effect of enormously complicating the
}alculations required for decision. Quite often the effect of this
transition to measurements, however, is actually to simplify the
technical part of the decision problem.

" The technigal simp]iﬁcation comes about, as you might
expect, for purely mathematical reasons, When it s possible to
substitute continuous (smooth) curves for discrete  {discon-
nected) points, the mathematician is able to use powerful tools,

197
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such as calculus, in his manipulations of the symbolic model,
Perhaps you do not regard the introduction of calenlus asa
simplification of a problem, but, as has been noted in connec-
tion with physical models, simplicity is relative.

With the help of calculus and still fancier muithenitics (such
as pointsct theory) it is possible to construct much more
flexible models for Statistical Decision than the clementary ones
which I have presented. The use of advanced matheatics
allows us to widen the scope, the range ol applications ok Statis-
tical Decision. O

T will not discuss these advanced models in tzhi’.’s' ook, but I
do want to describe the transition [rom classiﬁ,c;:{tion L0 Imcasure-
ment. 'This discussion will also serve to tie t;é‘g\zther and to ilus
trate the concepts associated with data, ymodels, and sampling
which have been introduced in the ]iss’g}tflree chapters,

S\ J
P

Ordcring

The basic idca in the transitibn from classifications to meas-
urements (such aQ’?i%Eg'h%E}ﬁibE?é:Ht%‘;gfﬂﬂd of corn in bushels,
etc.) is order or, in Ul:her‘;\iérds, relationship betveen the classi-
fications. Some clasgi&t%tions have no apparent order, For ex-
ample, individualsﬁrﬁight be asked in a survey whether they
preferred ice cgeanl, cake, or candy. If we wcere making up a
table to present’the results of this survey, there would be no
obvious 01‘61?? m which this table should he arranged. There is
no reaspr 4¢hy we should not tally the cake Jovers between those
th\‘p\’ fer ice cream and those who prefer candy, or, in fact,
makg'any other arrangement of the three catcgories.

e _On the other hand, if 1 am classifying patients suffering frem
A given discase as mild, moderate, and severe therc is a natural
ordering of these categories. We would fecl that the mild cases
would more nearly resemble the moderate cases than they
would the severe cases. Various degrces of ordering of classes arc
possible: thus at one end of the scale would be the classification

of desserts and at the other end of the scale would be numerical
measurements, If we weigh three children we may find that A
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weighs 60 pounds, B weighs 50 pounds, and C weighs 65 pounds.
Not only is there a natural ordering—G is heavier than A who
is heavier than B—but we can go still further and say that there
is Tess dillerence in weight between A and G than there is be-
tween oA and B. Numerical measurements involve a very sirong
ordering ol the classcs.

A secord characteristic of numerical measurcments is that
the classilications can be made fiver and finer. In the example
given above the weights were given to the nearest .'3—1)91.»1&(1
category. but they might have been given to the ncarest, potad
or the neavest half-pound. In any actual process 0!_".1';11‘5‘351.11‘6-
ment there is a practical limitation to this processsol subdivid-
ing catcoories (for example, the scale used in wcigl}ihg may only
read to (he ncarest ounce), but, hypotheticallyat least, the sub-
division could be carried still further i["ﬂjﬁ\fl‘cld better equip-
ment. o\

If the midpoints of the weight ¢lds3es were marked along a
line, and if the process of subdiaﬁ;iion were continued indefi-
mitely, there would AT abrer vutrgsslated points. ‘Then
gradually these poinis “-'oglc];fbecome so dense that the set of
points would eventually appear to be a continuous straight linc;
that is, the gaps wou d'\be’ﬁlled up and pencil points would flow
logether into a solid line.

There is mo’rg"m' the construciion of a good measurement
scale than St};ging otdering or finc subdivision. There are such
matters as¢the choice of endpoints and units. There are also
questiops\ ﬂlvr)lving the relationship between measurement
scal'e,ﬁéf:-i’nd the actual scale may be chosen so as to provide simple
Qﬁ‘aﬁfmships.

A Measurement Prototype

Now let us tarn our attention to the job of constructing a

matlicmatical model for measurement data. In order to have
a specific example in mind jet me suppose that 1 have just
measurcd the length of a room with a stcel mecasuring tape anFl
have obtained the numerical value of 14 Feet 2 inches. This

Q"



200 DESIGN FOR DECISION

information is to be used to make some decision, Perhaps I am
planning to order some wall-to-wall carpeting, so thar it will
pay mc to devote some thought to the interpretation ol this
quantity, 14 feet 2 inches.

First of all, T will regard this particular measurement as a
sample from some population. The question is: Whar popula-
tion? In this example I will take ay my hypothetical population
the population of measurements which 1 might obtain if*L&gere
to repeat my measuring process. Conceptually there would be
no limit to the size of this hypothetical population. O )

Next, [ must try to specify this h}-'poth(rti(:‘a.];" poplation
mathematically. First, however, I might try to gixve the specifica-
tions in verbal form. I can start by asking.nﬁ-‘gclf: What do 1
know from past experience about measuremeﬁts ol this type?

Onme thing I know is that all of th(;:’nhmcrical values in the
hypothetical population will not\be“the same: I nright get
14 fcet 3 inches if T measured a ;sé(iofld ttme and 14 fect 1 inch
if I tried again. Although (here¥swill he a scatter effect in my
mcasurements, 1 alse’ KrdbragBavary €491l he some clustering,
I would tend to get, say, Mifeet 2 inches much more often than
I would get 13 feet 6 iniches.

These remarks, are rather vague, and I might try to make
them more definite\by using the concept of a frequency distribu-
tion. 1 might imakine that I repeated my measurcment process
a very Iargslﬁumber of times—a thousand times—-and that I
countcd,{he number of cases in which 1 measured 14 feet
2 inci\t%f,"]ui fect 3 inches, and so on. If 1 let y stand for some
giis;gﬁce. and N (y) represents the number of measurements in

,@ylj\ic'h this distance was obtained, then I could plot N {y}

Nagainst ¥ and obtain a picture of the frequency distribution. In
Figure 12.01 I have drawn the type of frequency distribution
which T might expect to obtain from the thousand measure-
ments,

I have drawn this particular distribution on the basis of
previous experience with numerical data; it represents a prolo-
type. T would not really expect to get this particular distribu-
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tion if I measured the room a thousand times, but I would
expect to get a frequency distribution of the same general
character,

My}
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Fig. 12,01 IIypothc‘t‘ﬂ‘:‘ﬁl"]ﬂg{ﬁ%h@'bpﬂﬂﬁm Room Measurements

This prototype has th\e"follmving characteristics:

{1y The distrit 1(%051 rises to a single central peak {mode).
Technically such a distribution is called unimodal.

{2) As ongfmoves out from the central peak in either direc-
tionpthe distribution tapers off regularly.

&

Th'c’%éfluency distributions of most measurement data have
th@.i}'vo above characteristics. Not all measurement distribu-
"N',bl\z’s, however, show a third characteristic of Figure 12.01—

\S};mmetry. In Figure 12.01 if one moves out a given distance
from the central peak, the height (ordinate) will be the same
whether one goes to the lelt or to the right. ‘This assumes, lor
cxample, that one would get the measurement 13 [eet 11 inches
as often as one would get 14 feet 5 inches. ‘Fhis characteristic
of symmetry (or pear symmetry) is quite common in measure-
ment data, and most measurements of distance show this sym-
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metry. Therefore, I will include this as a third specification of
the prototype:

(3) The distribution is symmetrical about the central peak.

Mathematical Model

In order to construct a mathematical model we would wang
to describe the population, or really the prototype of the popy-
lation, in terms of a fomnula, T( is math f.‘.matically COIVOTLCNE to
replace the discrete distribution of Figure 12.01 by a crot\ﬁﬁm\uous

distribution (as in Figure 12.02). To do this we iljll’!fgf‘.')(:‘ that
the one-inch intervals are successively subdivided@yinfinitum,

There is a wide choice of mathematical cutes {Tunctions)
which could be used to represent the praogpe. I snecifica-
tion (3) is removed, an even wider cl wipe is possible, The
actual selection is arbitrary, Lhongh;&éﬁ course the vesuhiing
model is subject to test against datawIn practice, onlv a few
mathematical funciions have begn.tsed, and by [ar the most
popular function is Rb&\y_H-Epéﬁ.{;ijjé}@_@g.gﬁﬂn.

The normal distributiomeds a symmetrical, hellshaped dis-
tribution with mathemapjtai’pmperties which make it especially
convenient when t.h(.: im};del Is to be manipulated syimbolically,
The equation of thectirve may look formidable to the uniniti-

cated, but it is sifiple to a mathematician. 1 want ro give this
equation l)ecalléé ir brings out some important points.

Let y dengte some particular measurcment of length. We
can cm}s'{d}f’that we have subdivided length classes until the
class Qi(’rtér\-’als are very short {call the length of an interval dv).
Welmay then want to know what the probability is that a
masurement will fall between yoand y 4 dy. T will denote

}_11'5 probability by dP (y) ., The normal cquation then hecomes:

(72.07) dP(y) = %—; dy

where ¢ is a constant with value approximately 2.718, » is your
old friend from the formula for the arca of a circle and 1is
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approximately equal to 3.1416, and » and o are baramelers.

These parameters have an interpretation in terms of the
appearance of the curve. The quantity p (the Greek letter mie)
is often called the expected value or mean and is the numerical
value of y where the curve reaches its peak. I[ we were to take
an infinitely large number of measurements of the room and
average them, then we would obtain this valuc, . Since p velers
to this central value of the curve it is sometimes called theNbea-
tion parameter. The other parameter, «, is called thegstandard
deviation and rcpresents the extent of scatter of (e nicasure-
ments in the population. . N

The effect of substituting larger and larger fiimerical values
for g is merely to slide the entire curve oyehdo the right with-
out changing the shape of the curve. Theyquantity ¢ can take
only positive values. If ¢ is small thef@irve is sharply peaked
and the tails arc small. Il « is large;’:the peak flattens out and
the tails become larger. In othgp iv()rds, if 7 15 small [t means
that the measuremnents 1w, ul n}:g}}és%;ro{;é(_{%cly' around t.lu:.r.entral
value, while if « bccomcs}jarge it would indicate that the
measurements were 111(}ré"scattered. The appearance of the
normal curve for diffefent values of the parameters is indicated
In Figure 12.62. ¢{™

The parameters o and o can also be interpreted in terms of
bias and repﬁ{l‘ta”bility. Consider the population of repeated
meamremg{ts’x-vitll a steel tape. If we have some method of
measurifg) the length of a room which is generally acknowl-
edged{tv be much superior to the use of a steel tape, then this
mcgflt}(l can be taken as a standard. Let the numerical value ob-
“tairied by this superior method be #*. Then if p = p* the stecl

\tape method is said to give unbiased measurements. On the
other hand if, say, ¢ 15 greater than ¥, the stecl tape measure-
ments would be biased upivard.

The repeatability or concordance of measurement data is
cvidently related to the amount of scatter in the observations
which, in turn, is measured by the paramcter o. (’Jt.‘m.scquently,
as long as we are dealing with a normal model the concepts of



MEASURLXMENT 205

bias and repeatability can be stated symbolically in terms of
the paramecters p and o.

Since « and o are population parameters they will, in practice,
never be known exactly. However, they can be estimated from
data and these cstimates used in assessing the bias and Te-
peatabifity of a method of measurement. In technical publica-
tions the word “accuracy’ is sornetimes used as & synonym for
lack of Tsias and the word “precision” is used instead of ae™\
peatabiiity. A

So much for the mathcmatical model of the popt{lﬁti\on
measurements. 1 shall further assume that the actualymeasure-
ment was a random sample from a normal distnibliifion and
consequently the probability of the sample is giuén"by equation
(12.01%. If 1 used a sampling method whicliNinvolved personal
choice {for example, if I discarded aq};iinéasurement that I
didn’t like) then equation (12.01) would ot necessarily hold.

Use of the Model N
T'he mathematical ‘iodebveilitonty provide numerical proba-
bilities wwhen the two parafnéters, p and o, have been determined
numericaity, This deten{nination takes us back to data, i.e., to
previous measureme fsxwhich I have made with the steel tape.
The parameter o be estimated from such data, and 1 will
suppose that the ostimate of o is 1 inch. The parameter s cannot
be eﬁtilllatt’:s(:from previous data unless I have alrcady made
measurergents of the length of this particular room, However,
from pfevious information, I may have satisfied myself that the
Steclftj;ipe 1was not biased. Notice that p would then have the in-
't&ffpi“etation that it was the true length of the room, or, in gen-
\er}al, the true length of whatever was measured by the steel tape.
Although 1 can use my model to evaluate my method of
measurement with respect to bias and repeatability, T cannot
use it to calculate numerical probabilities (such as the chance
of getting a measurcment in the 14 feet 2 inches class) because
I have no estimate of p. In spite of this, there is some useful in-
formation which can be obtained from the combination of the
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model and previous data. I can establish that most of the time
(about 95 per cent of the time) my measurcments will be
within 2 inches (25) ol the “truc” length of the room (ui.

The use which can be made of the above statement depends
on the decision situation. IF T am buying a small carpet 19 fect
long, an error of 2 inches in my measurcment would hardly
matter. On the other hand, il T am buying wall-to-wall carpeting
a 2-inch error could be quite serious, aned [ would be uluu mt
to make a decision on such unreliable data, Oy

What can be done in this latter situation if I do noi, hive any
mcthod of measurement available which is superl@l’ 16 tiie stecl
tape? One possibility would be to take a series gf/mcasurcients
and then to average them. This will soly@ady problem pro-
viding T amn careful that the observations are independent or, in
practical terms, that I do not let the%@sults of my previous
measurements influence my later ouesx

Now T face the question: Hou many measurements will I
have to make? To answer Thl IJ%E stion I can proceed as [ollows.
Let me call the num’h‘g;}!o ,lilEashTLmenL% which I will nced n.
I take these n measurement’ and calculate their av erage. Next
I must construct a mo,de:l for samples from a population of the
averages of n mea u{emcnts Fortunately this takes very little
work because of somie interesting properties of the novimal dis-
tribution.

AS

Tt is pom{le to derive mathematically that the average of a
series of¢ ﬁ()ﬁnall} distributed obscrvations is itself normally
distribiitéd. Morcover, this new normal distribution bas the
samc Nocation parameter as the population of individual ob-
Ivarlom namely p. The amount of scatter of the averages will
\Je less than the scatter of an individual observation. We usually
use the term “Standard Error” when we refer to the degree of
scatter of an average (or, in fact, any combinalions of the origi-
nal observations) . The standard crror of an avcrage of n meas-
urements can be shown to be equal to the standard deviation of
an individual observation (o) divided by the square root of the

number of observations (\/n).
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It is now necessary for me to decide, on the basis of the de-
cision sitnation, how much precision I wish in my estimate of
the length of the room. Alter due consideration I specify that
1 will be satisfed if most (95 per cent) of the time my estimate
will be within half an inch of the actual length of the room. It
can be shown (using the assumptions made previously) that
abour 95 per cent of the ume an average will be within two
standard crrors of the actual length of the room. Hence, my™
specilication is equivalent to the requirement that two standard
errors should be equal to one half inch or one standard\'éfror
equal to onc quarter inch. ' ~\ N

To find #, the number of measurements neededit is only

' A\
nceessary to solve the equation )
o _] Y
Va4 o
A7 Vv

where T kuow that ¢ = 1. Hence T sbould gake sixteen measure-
ments il T want to mect my speciﬁ’gétions.

There is onc vcry%‘gﬁ’lﬁﬂlﬁﬁ'l@"p‘l‘bpm@ﬂ0[ the normal dis-
tribution which I want o “eihphasize. Perhaps the prototype
that [ chose was not a g6od model {or the indivic_lual measure-
maents, Perhaps T sl @d’have used a prototype Wltl.l two peaks
instead of one or an%nsymmetrica] prototype. In this cvent, the
use of the norp@iﬁhodel could v
I were to aggloh the basis ol a single measurement. But
. azing—even if the protolype was not normally
. sixteen observations would be very
T would not be led astray by my
ge of a number of

ery well have led me astray il
and

this is T(':-]”}Z:'aﬂ]
distri}n}?}t{l‘; the average of
neari hormatly distribute d!
figrel if [ were to act on the basis of the avera
oBscrvations.

These last remarks need 2 little qualiﬁcation. A mathema-
tician can sit down and devise 2 fantastic prototype for whiclh
this last remark would be wrong. In practical applicarions, how-
distributions arc quite rare, although

ever, such pathological ; :
les in cconomics and biology (1.¢.,

there are some famous examp
the distribution of income) .
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The normality property of avcrages also applics to 1otals and,
In certain situations, even to counts. It provides onc very good
reason why the normal model is so successful in practical ap-
plications.

The Normal Distribution

The normal model {or measurements has been used in nc{ﬂy
every held of human activity in which measurements ave niade.
Originally it was applied to astronomical and land-gftyey ob-
servations, and subsequently it was used to descr‘ib{?\ Mcasure-
ments in various branches of physics and chemigtey” When the
biologists began to make mcasurements t.he{Zb'orrowed many
techniques from the physical sciences—mds$t)ol whicl: did not
work out very well. The normal curve, Wowever, was success-
fully used in medical research, in agr’éﬁﬂtﬁral field studies, and
other biological applications. Inyfirice studies in economics,
in mental measurements in pS)}I{:ilﬁ]()g}’, and in various other
applications the use of the nopmal model was fruitful. In view
. W w.clhr‘au'ggrar‘ orgin
of this breadth of apﬁhcatlo}mt Is ot surprising that the normal

distribution acquired the Status of a “Law of Nature” and thata
mythology grew up atéund this ubiquitous model.

Individuals an l@eitbooks, unable to distinguish between
myth and mathphave accepted the model as an article of faith.
To my way oftlifnking it is dangerous to identify a model with
the real }»'er’d, so I want to devote a little attentdion to the
question™Is the normal curve a fact of nature?

Fizst, o[ all, T do not feel that characteristics which we put
:im.ﬁ);’the data when we construct operational definitions or make

'“Y:;al(‘:rulations should be regarded as facts of nature. Such char-
acteristics 1ook to me like artilacts of man. As 1 noted carlier,
there is a tendency for averages (o be normally distributed
irrespective of the population sampled; hence, the normality
of the distributions of averages does not constitute evidence that
individual observations are normally distributed. A similar
effect holds for other quantities than averages, such as the scores
on a test,
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This problem of artifacts in dataisa thorny one. For instance,
it can be shown that if a series of observations is smoothed by a
common techinique called mean moving averages there will be
a tendency for the smoothed data to show weli-marked cyeles
even il the original observations are samples from a random
number table. Mean moving averages are often used on eco-
nomic data (such as a time series of stock market prices) and
many investigators have spent their time chasing will-o™-the-
wisp cycles which they themsclves have put into the data by
their computational methods. \ \)

In suniving the question as to whether or not the normal
distribution provides a good approximation to a popﬁlfﬂion, it
is thercfore necessary to limit consideration to féequency dis-
ributions of individual measurements. When.this is done one
often encounters markedly nonmormal };L{Pulations. On the
other hand. one also meets frequency. distributions which are
unimodal and symmetrical, and the/nprmal distribution pro-
vides a good approximation. Withe, very large amount of data
one can generally poi‘ﬁfwcﬂiﬂ'@ihfm'}hfﬂ’gﬁiriﬂ which even the
unimodal and symmetrical freguency distributions depart [rom
the theoretical normal cufve. Such minot deviations are unim-
portant in practice, b 1 they do constitute evidence against the

tiormal distribution }sa fact of nature. One crusader against the
er of $100.00 for any col-

d observations which will
lity. So far as T know

myth of normality-has a standing off
lection of da ':v:ith over one thousan
mect the seaddard statistical tesis of norma
he has }1:%‘ 1o takers.

Thére is one proviso in the ©
of\¥he measurement should no
&rﬁcted in such a way &s to lead to a 10
obscrvations, Some psycho]ogical tests,

Fer—the operational definition
; have heen deliberately con-
rmal distribution of the
for example, have been

carefully normalized.
Most of the curren
normal model. Extensive tables
for the normal curve itself but for some
which arise when normal data are mant

¢ statistical techniques are based on the
have becn constructed not only
derivative distributions
pulated. Tor example,
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the chisquare distribution (which will be discussed in the next
chapter) tells us what happens when the original observations
are first squared and then averaged. In practical work, such anx-
iliary distributions are nceded, so one has the choice of using the
normal model or constructing a whole set of new tabies for some
other model—not an attractive alternative. Consequently, al-
most everyone uses the normal model, )

"This is not quite as bad as it sounds because even ‘ifathe
population sampled is markedly nonnormal thiere are a@mtnber
ol tricks ol the trade which can be used to translorm {fy*original
population into a more nearly nornial one (inmflm"}gs computa-
t10ns are concerned) . \:

Steps to Prediction '

In the last four chapters T have tl‘i{:ri';‘{}o‘ sketch the workings
of what T have previously called allﬁa}i\-’énccd Probability Pre-
dicting System. The normal modelavhich 1 have just described
in an exarple of an advanced{system. Most of the rechnical
part of Statistical DECHIRTHERWithe fRese advanced SYSLCIS,

In my discussions I ll'fj.\-‘é:f'.]'ied to describe, step by step, the
way in which we car}\bridge the wide gap between vaw, lm-
perfect data and ,ché Yinal stage—numierical probabilitics as-
sociated with outcomes. The gap may be thought of as a wide
river with twosslands in the middle. When we go from raw to
refined dataf j}v\c construct a span between the real world and the
nearest lauid. When we devise 2 mathematica! model for data
basec.lsfis"the concept of a sample, we link the symbolic world
wit}} the other island, Finally, by using both the mathematical
»n'}@klérl and the rcfined data, we create a bridge between the

Ngwvo islands and open the way for traflic between the syrubolic
world and the real world,

The building of the bridge is a long, hard joh. The creation
and testing of models, the gathering and refinement of data,
the cvolution of a workable predicting systemn constitute a
sequential process which may take years or cven centurics. I
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canmot. iherefore, present Statistical Decision as a quick and
easy highroad to success.

There is one consolation. Once a good predicting system has
heen evolved, the use of this system in future decisions may be
quite easy. The collection of data and the manipulations of
the model may become routine. This routine may be tedious, it
may reguiTe some compl.LLational cffort, but, whenever there is
sufficient demand, a machipne can be designed o take over tl}Q
chores. Tlence at the operafional stage it may be both guick and
casy o go from data to prediction. The Predicting Systgm/gan
grind out good forecasts ior the administrator or exgdu}i\-'e, or
it can be coupled to the later stages of the 1)ecis”i.éffl'34\-{akcr 50
that wise decisions are made automatically, dcg:jéé@hs which are
virtually “untouched by human brains.” \%

Summary L

The transition from classificatigogvto measurement 1s de-
scribed and a verbal prototype ofya population of measurements
is prescnted. The nmmaﬂhiﬁigﬁﬁfutj,%.gignused to translate the
verhal prototype intoa matlic"niatical one. The use of the mathe-
matical model is illustpated. The interpretation of the normal
model, the most 111@)“01" ant model in statistics, is briefly dis-

cusseel.

N\



CHAPTER 13

STATISTICAL INFEHRENGE

N\
2\ AN

Beyond the Sample ¢

The Great Dctective studies the knife \'\Ii'\und in the murder
victim’s back and announces: “The murderer is left-llanded.”
You are introduced to a middlc—agpii1gt‘nt]cnmn and. after the
routine introductions, there is ahpief but uncomftoreable pause
before you ask: “Have you ,ftdd so-and-s0’s latest book?” A
medxcal sclentist \g%glgg}gﬁﬂmgrspgpgqlﬁ of his e\pcwmmt and
says: “The new treatmentis supcrior to the old one.

These three episodes have one thing in common: they invelve
the process of infgrence, the procedurc for going [rom a
sample (data) ‘and’ structural knowledge {model} to a state-
ment. In all @¥ce cascs, the statement voes beyond the sample.
The Great\Detr,ctwc has not seen the murderer with a knile
clutched\l’n his lelt hand. Similarly, you are not sure that the
mldﬁkn aoed gentleman will be interested in so-and-so's hook,
hubyou think from the gentleman’s appearance that this book

s a likely common ground for conversation. The doctor has

secn the results of the new treatment [or a sample of patients,
but his statement is not limited to this particular sample.

All of us are accustomed to making inferences in cveryday
life, but we usually do the job intuitiv ely. What I want to do
now is to iry to analyze an intuitive process to sce il it can be
stated in terms of the concepts of sample, model, probability,

and so forth. If this can be done, perhaps the logical structure

of the intuitive inference will be revealed,
212
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To do this, T shall try to expose the inner workings of the
Great Detective’s brain as he forges the chains of inferences
which lead him, at the ¢nd of the book, to the identity of the
murderer.

Let us supposce that the Great Detective has just arrived on
the scenc ol the crime and is busy examining the hafe of the
knile in the victim’s back (i.e., he is gathering data) . He notes
the angle at which the haft protrudes and various other cluesy

The Great Detective’s brow [urrows as he considers the
alternatives: the killer must have held the knife in his l.eﬁt\hgnd
or ¢lse he thrust home with his right hand. In cfiect,the Great
Detective is setting up a list of alternative statemefis 3 (hypoth-
escs) which he might make: R

77 : The murder weapon was held in #h¢ right hand.
Fi: The murder weapon was hcl(ih the left hand.

The sleuth now considers what mi‘éhi he expected if H, were
true. Taking this hypothesis to e “true, what sort of wound
might be expected? "ﬂﬂg-‘ié":g@@inidt&nghrargument; the sleuth
makes no assertion at thispoint but merely considers what
might have ]'lappencdmi{:the murder weapon had been held in
the right hand. (¢80

The Great Detgcﬁ%e now draws on his prodigious knowledge
and past expexience. He is well acquainted with the pattern of
behavior of a}aller who holds a knife in his right hand (i.e.. the

detectiveran set up a model for human behavior), and this
informhiﬁm leads him to deduce (i.e., derive from the addition
of HyMo the model) that a specific type or class of knife wound
”%\fo;lld result. The Great Detective therefore considers all pos-
ible types of knife wounds (samples) and, under the hypoth-
esis that the murderer used his right hand, the criminologist
can divide the set of all possible knife wounds into two classes,
say likely and unlikely.
In the same manner, the detective can take the hypothesis
H, (a left-handed knife thrust), and under this hypothesis he
can again divide the set of all possible knife wounds into those
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which are likely and those which arc unlikely. This classifies the
sel of possible wounds into four categorics: (1) Wounds which
would be expected if the killer were right-handed but would
be unusual otherwise, (2) wounds which would be expected if
the killer were lcft-handed but which would be unusual other-
wise, (3} wounds which might be expected if the thvust were
githher right-handed or lelt-handed, and (4} wounds which
would be unlikely to have been made by a thrust {l.c., tidght
be made by a thrown knife). Notice that this entire {_tié}\iiﬁ(‘.&«
tion process does not involve the actual wound )'e‘t,'sh\nd could

-

be perlormed before the victim is secn, N

The Great Detective in his examination of ghighactual wound
is (rying to classily it into one of the four Pugdetermined cate-
gories. He concludes that tlic naturc of the'Wound iy such that it
talls in category numbcr two—that His wound is onc ol the
types of wounds which would be‘ex’;’)‘ected [rom a left-handed
knife thrast but which would be iusual, or even impossible,
if the killer used h\i\?wr\%»%}atrgb?mtaﬁry_m-g_in

In view of this the Greagdetective rejects [1, and affirms .
He announces: “The n‘{ur‘dérer is lelt-handed.”

To recapitulate t}}@:steljs in this inference:

(I} A listof s‘tzhéncnts or hypotheses is set up. These state-
ments gonbBeyond the sample.
(2) Alisgefall possible samples is made.
(8) Under a specific hypothesis (i.e., conditionally} the list
\Q\f all possible samples is divided into two sub-lists, ¢x-
.j’.'; pected samples and unusual samples.
d 4) If the actual sample is on the unusual list, the corre-
N/ sponding hypothesis is rejected.
(5) By a process of elimination the hypotheses arc rejected
onc by one. If one hypothesis remains which cannot be
rejected, this hypothesis is affirmed.

Note that therc might be some wounds of which the Great
Detective might be unable to make a statement of cither hypoth-
esis. This would happen for wounds which might be expected
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either if the thrust were right-banded or if the thrust were left-
handec.

The above pattern of inference is, I think, a fairly common
onc and, as we shall see, is also the pattern of statistical in-
ference.

Now fet us jump to the end of the book and watcl: the Great
Detective at work again. In the intervening chapters the sleuth
has gathered more and more clues (data). By the time the deN
nouement is reached a list of suspects has been built up. AL his
list of suspects is a list of hypotheses. If the suspects ar:{'h’u\m—
hered {1, 2, 3, exc.), and if i is any one of these 111{({1{)&1‘5 then

the i-ih hypothesis is:

.
H . The i-th suspect is the murdcﬁ:}.

For convenience, the set ol various dQes which the Great
Detective has unearthed might be caped’S  (for sample) . The
question facing the Great Detective 4s» “If the i-th suspect is the
mrrdever, what is the chance that(this set of clues, S, would have
been obtained?” In g%!‘l"’[ﬁi'f'ﬂl?‘ﬁ:}l‘?ﬁ'é}’tﬁig-'qnmstion might be re-
phrascd as: What is the pt’ni}'erical value of P(S|H)? 1 hope
that vou will recall ¢hat P(S|H,) s the probability of the
sample 71 the i-th g{po’thcsis is assumed, a conditional proba-
bility (sce page 70 .

Casual detediiye story rcaders, such as myselt, will miss most
ol the [‘.]l.lCS’\'él:ld will not know what to do with the chues which
are spoticd.” The Great Detective, however, has the previous
experjence and models necessary to utilize all of the clues in
otd(c,:t"‘t.o evaluate quantities such as P{S | Hy.

M‘;Th.e climax comes when all of the suspects are scated 1n the
Very room in which the decd was donc. The Great Detective
now explains to the suspects {and to the casual readers) just
why tt Is very uniikely that the sample of clues, S, would have
been obtained if the murderer were the second suspect. Thus
he demonstrates that P (S| Hy) i practically zero. In the same
way he proceeds through the list of suspects and sliows that irt
the sample of clues there arc one or more clues which renders it
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highly unlikely that suspect number 3, 4, or 5 could have
committed the crime.

By this process of elimination the Great Detective narrows his
list down to suspect number 1. For suspect number 1, PS5 H))
is not near zero; in fact, it is a large quantity. Consequently, the
Great Detective announces: “Suspect number 1 15 the mur-
derer!” A

Faced with such relentless logic the lictional criminai\{sus-
pect number 1) either breaks down and conlesses \{_w\]ly or
else whips out a gun and tries to escape (cffe(t&elx a con-
fession}. The Great Detective, from his model§ Of human be-
havior, has already anticipated this dtt(,mBKQnd COTNErS sus-
pect number 1, who then jumps out a window or perishes in
some suitably gory fashion. N

Rules for Inference '

If you will examine other, mfcr(‘m,es—for example, those
which lead vou to,ghoosg- M?EFE%%HJ?% {{opic to start a conversa-
tion with a stranger—I tlnn]\ you will ind the same logical pat-
tern as the Great De,l;ectn«e 5. When you are introduced to a
stranger you set gp}a list ol alternative statcments such as:
“X will be interésted in books” or “X will not be intercsited in
books.”” The dppcarance of the stranger is the sanple. Social
stereotypes\provide the model. If the stranger 1s a serious-
100ng fuiddle-aged gentleman you inler that he will be in-
teerthL in books.

Sdo not mean to imply that you follow the deliberate process

©utlined above. You probably make social inferences so auto-
\ ymatically that you have no awareness of the process of inference
itself. In fact, it would be silly to try to make every social in-
ference by a formal procedure when intuitive methods will do
the job quite well,

When we consider the inference of the doctor concerning
the eflicacy of a new treatment, however, there Is a strong -
centive to try to develop a formal process, True, the doctor can
glance at his cxperimental results and intuitively reach the
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infercnce that the new treatment is superior, but this inlerence
_unlike the social inference—is for public rather than private
conswinption. The doctor must convince not only himself; he
must convince other doctors.

1f the doctor justifies his infercnce by a remark, “That’s the
way the experimental results look to me,” other doctors may say,
“Hwneh! That's not at all the way { would interpret the re-
sults’” 1f different scientists look at the same data and, ined
tuitively, reach opposite conclusions, it is diflicult to resalve
the mzument. Not only must the discussion take placgat "2
verha! level, but, further, the justiﬁcations will nece(ss'zg"ily he
vague aml subjective. Such a situation is hardl{zsatisfactory
for a scientific problem.

Since it is so hard to resolve the situation when doctors dis-
agree, it is easicr to meet the problem by @témpting to avoid
the disagreement in the first place. Ea)this we might try to
convery the procedure lor inference previously discussed into
a more definite and omt;%ticlvbe_ wit;e‘:f?-r inference. Then if the
doctors can agree in a(iC'aIicet%t{dftllaé Y& ¥hr inference, there
should he no disagreement. oft the conclusions.

As you might suspe{c!;,gthe construction of a quan.rfizatfve
procedure for inferéice” will involve the various principles
discussed in the Jagt\four chapters. The sample is characterized
by counts or n:geaéﬁfements, the modcl is specified symbolically,
and the verhgh categories of likely or unusual are replaced by
nuxnericz}i\:[},\r’cibabilitics.

The, t:ﬁ)hstruct_ion of a rule for inference is quite analogous to
the eamsiruction of a rule for decision. A Decision-Maker makes

‘Wice between possible actions. Now we want an Inlerence-
M¥ker to select a statement or hypothesis from a list of possible
statements, Since making a statement may be regarded as an
action, a theory of decision includes inference as a special case.
Inference-M ak;*_rs are simplified versions of Decision-Makers.

An actual problem in medical research may serve to exemplify
the ahove notions, Consider a doctor who wishes to compare a
new (rcatment for a given allergy with a standard treatment for
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that allergy. The doctor may feel that the efficacy ol the weat-
ments can be measurcd by the amount ol protective substance
(antibody} in the patient’s blood. The amount ol antibody
would actually be determined by a fairly complicated tizration
procedure, and the measurement obtained would Le called a
liler.

The plan of the experiment might call for half the parizngsto
receive Lthe new treatment the first year and the 5t<1mir[m tRéat-
ment the sccond year, while the other half of the p‘lLlc’ would
reeeive the treatments in the opposite order, Dueg prwauuons
would be taken to insure that neither doctor noyp.-:.:.n.ms Knew
which treatment was received (such a plan is(dalled @ double-
blind experiment). The purposes of theseland otlier precau-
tions, such as randomization, would be o) wuard against biases
and to contrel known sources of \11“13&{011

After completion of the experhuieh’ the patient’s titer on the
standard treatment would be subcracted from the pavent’s Liter
on the new trcatmq\m\\,hmaﬁhbl htg,aopgll}\ent this fﬁﬁé’;t’ﬂ((’ be-
tween treatments could beddenoted by Y. Evidently the ¥'s
would serve as a measuge ol the relative eficacy of the two treat-
ments. If the new t[:cfaﬁﬁlent were better, the ¥/s would tend to
be pasitive. 1f thc\s@.aﬁdard treatment were better, then the ¥,s
would tend to e negative. If there were no dillerence in the
efficacy of theefeatments then the ¥,'s would tend to be small
pt_lsit.i\-'e'g){;}ﬁlall negative numbers. The ¥/'s would not be ex-
pected N/ be exactly zero bhecause an individual's titer may
chan'g;e a little over a period of time even if he always receives

Mth’é,’ 8arc treatment,

\‘:"\"0\\-' suppose that the doctor has carried out a carefully
planncd experiment on ten patients and that he has obtained
ten numbers (Y/’s). ITe would like to make a staterment about
the relative cfficacies of the two treatments. What the doctor
needs is a rule for inference by which he (and anyone clse who
might wish to chieck on his results) can, from the observations,
make a statement abouc the relative merits of the treauments.

In order to obtain such a rule for inference the doctor can fol-
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low in the footsteps of the Great Detective—he can take exactly
the same {ive steps (page 214) that the Great Detective took.

Step 1: Draw up a list of possible stalements.

In the doctor’s case there might be two hypotheses which
would b ol interest:

H,: Thaore 1s no difference in the eflicacies of the two treatmentsgs

H,: Theve 1s a diffcrence in the efficacies of the two treatments!
& N

The destgnation H, is commonly used for the null hypb\tl'lésis
(i.e., an hypothesis of no difference) , while the symbohH , usu-
ally represents an alternative hypothesis. I—Iercj&g”alternative
hypottesis would be that the treatments were diflerent.

I want Lo caution you against too literal aiyinterpretation of
these hypotheses. From past expericnce}'\éah safely say that two
differert treatments would not be exacily equal in effectiveness
—just as no two peas in a pod are literally identical. Hence if
H , were interpreted sg{q}ﬂ,bi.gl}ﬁggkiy%?lg?}; necessary to do an
experimaent; we could simplyassert H,. Rather 77, should be
interpreted as stating tha]:jthé’ two treatments are equally effec-
tive for 1l practical purpeses, and H_ implies sonie apprcciable
difference hetween thgsefficacies.

If T assume thaf the Yi's are normally distributed (page 202)
and if . is the e’){pécted value or mean of the normal distribu-
tion, then tl{%&’i\?o hypotheses can be translated symbolically as:

’."§" Hy: n=0
Hiow =0

7'\

WO
Whére the equal sign with the line ¢hrongh it means not equal.
This symbolic statement of H,, can be interpreted in terms of an
inﬁnitel}-’ large ]'1ypotllet.ical experiment. Thus iflthe treatmc.ms
are equally good and if the number of patients is increased with-
out limit, then the average of the ¥,'s will tend 10 be zero. In
olther words, there would be no consistent differcnce between the

standard and the new treatmcents,
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Step 2: Specify all possible samples.

It will not be necessary {or possible lrere} actually to list all
possible samples. It will suffice to know that, concepnnally at
least, ¥, may take any value, positive or negative. The *wsslble
samp]es therefore comprise all combinations of the ten ¥ls.

Step 3: For each hypothesis (Step 1) specify the « “f)rr:hd and
the unusual samples.

\

Roughly speaking, the cxpected samples (if HU \\\\(‘\( true)
would be ten numbers, some of which would bc n(m ve and
some negative and most of which would be mmm teaily small
(l.e., near zcro). Unusual samples undex «FN nuil hvpothesis
{H,) would have most of the observations of the sume sign and
probably some numecrically large quqm\hn s. On the other hand,
if the alternative hypothesis is trugsthen the designarion of the
samples is, essentially, reversed, (Dhat is to say —what were the
unusual samples become the, (‘ﬁ»pected samples under the alter-
native hypothesis.www-dbraulibrary org.in

In a later section I slrall discuss just how ve can specify the
usual and unusual s{mpfu, more definitely. At this point the
vague definitions will suffice to indicate that the set of all possible
samples can b, }tﬂdcd into two-subscts which might be called
expected and‘ tnusual.

Step 4’\Defc'rmme whether the actual sample falls in the ex-
o
\\ pected or the unusual class (under H}.

&

JOnce the two classes are adequately specificd, the above step

m; vequires only that the experimenter examine the sample and pos-

sibly perform some computations to determine how the ac tual
sample should be classified.

Step 5: If the sample falls in the unusual class then H, 15

refected.

In actual practicc when H is rejected it is customary to assert
H —that is, to make the statement: “The two treatments have
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differer:t efficacies.” Here then is a definite and objcctive way to
progress {rom data to infcrence. If the doctors can agree to use
this procedure, they should all arrive at the samce conclusion pro-
vided they start from the same data. The role of the human in
this process is merely to se¢ whether the actual sample {alls in the
expected list or in the anusual list. This rule puts no strain on
human abilities. ~

Standards for Inference (O

Beiore we can continuc with the construction of an Inf&eﬁce-
Maker, it is nccessary to lay down some spcuﬁ(atwns for the
machine. To set the spe(:lhc.itlons we must ¢onst ider the ques-
tion: 3\ hat do we want from a rule for inferencer) The answer to
this question might be: We wanta rule for dinference which will
not lead us astray, that is, will not lead\m to make assertions
which fuiure investigators will shownte he erronceus. In short,
we warit a rule for inference wh](,h will enable us to avoid mis-
takes in our infercncésww. dbr a].ﬂlhr ary.org.in ]

I hard!y need io point out! ¢hat we cannot expect a rule for in-
ference to be infallible. We will have to cxpect that the rule will
lead us astray ogcasxouﬁ\) We can, however, demand that the
rule must make mfﬁ&kea only rarely. Let me therelore sct up
this condition asjtentative standald for our Inference-Maker:
A .s'«ztz.s'faczory’}ule for inference should make mistakes only
ravely, L

Alth, aﬁgﬁ {his standard may scem simple, this simplicity is de-
ceptle; Two words require carefu! definition: “mistakes” and

.Ial\ely

SUFirst of all let us consider what we mean by a mistake. The
first dilliculty that arises 1s that we can make several different
kinds of mistakes. Suppose that there is no diffcrence in eflicacy
between two treatments, and that our rule Tor inference leads us
to assert (hat there is a difference. Clearly we have made a mis-
take. T shal] call this a Type I mistake.

On the other hand, let us supposc that there really is a differ-
ence of some practical importance and that our rule for inference
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does not lead us to assert that there is a difference. Cyica again
we have madc a mistake, but a different kind of mistake. ! shall
call this a T'ype II mistake.

Notice that if we makc a T'ype I mistake, this constitites a “sin
of commission.” We have asserted something that isn't e, On
the other hand, a Type II mistake is a “‘sin of omissicn.” We
have failed to make a statement that would have been tred ™

Legally, “sins of commission” are considercd morg“serious
than “sins of omission”—one cannot be hanged for-f: g to
throw a lile-preserver to a drowning man, Sta’t.i&:i‘éiar:-.s have
taken the same attitude and have tended to congéntrate oa avoid-
ing “sins of commission” (Type I mistakes) ,“}\

There are some further complications b ‘the definition of
“mistakes,” but I shall return to this ppij;t‘a little later. Pirst let
me consider the definition of “rarcly/~As might be expected, the
vague verbal definition is replacedt Dy a numerical one, Thus in
the biological sciences the word,"jﬁarcly" Is usually understood to
mean “5 per cent of ERE-APHEIRTH Y& Pollows T will generally
refer to control of Typel mistakes at the 5 per cent level, though
the research worker cagéchoose any level he wishes,

One might think @hat the Type II mistakes would be con-
trolled in the sammeMashion, i.c., set at a preassigned numerical
level, but unfostunately this can only be done for a special class
ol statistical:t};‘zl'miques {scquential methods) . Tor the more fre-
quently gnéountered statistical techniques, it is possible to con-
trot oplydne type of mistake at a time. Thus if the Type I mis-
takeudy vontrolled at the 5 per cent level, the best that we can do
»isj;ﬁ«)'minimize the Type II mistake. Unfortunately, for small

Nsdmples the percentage of Type 1T mistakes may he quite large.

Let me restate these conditions as standards for Inlerence-

Makers:

Specification 1: Control the risk of a Type I misitake at 5 per
cend.

Specification 2: Subject to the first specification, make 1he
risk of a Type 11 mistake as small as possibie.



STATISTICAL INTERENCE 293

The above two specifications are nearly enough to enable us to
construet Inference-Makers, There is one further difliculty, how-
ever, wihich again involves the definition of a “mistake.” Since
this point is something of a semantic tangle (see Chapter 4, page
70y, 1 would advise the casual reader to skip ahead to the next
scctior:. However the reader who is actually concerned with sta-
tistical methods would do well to stay with me and struggle with
this wiessy point—and perhaps wrestle with it on his own. Q"

What 1 wish to do now is to distinguish between an e779x (as
the word is used in statistical literature) and an act.ual,rgii?;takc.
This distinction involves the difference between a},'c;o“mpound
probability (A occurs and B occurs), and a condit}oﬁ‘al proba-

bility {A occurs if B has occurred) . Sume I‘eaeié{s? may wish to
revicw the discussion of compound and conditiohal probabilities
in Chapter 4 before proceeding. In ogd&éctually to make a
Type 7 mistake, therc must be no diffemfﬂ&é hetwecn treatments,
and we must assert that there s a (iiﬁeft:nce. On the other hand,
the risk of error in the technicalisense of the word involves ihe
conditional probalJiﬁE‘}{&'{i’fiﬁ’ﬁfmﬂ'ﬁiﬁrg-i?.hat we assert that the
trearments are diffcrent ff ‘there is no difference between treat-
ments. “\ .
Aldwough the ¢ ftional and compound probabilities sound
Very much alike; ?[i) are quite diflerent in their meanings and
may also be q}@té‘di[f@r&nt numerically. Hlowever tl%erc is.a rela-
tionship l_]g}\i«;éen the two probabilities, a relationship which fol-

lows i'u{ﬁ\fhc multiplication rule (page 70} .

P,.j(?:jecc H, and H,is true) =F (reject H, | H ) P (H,) .

o0

N\

;i\-’hen properly interpreted, the above cquation provides the
Key to an understanding of current Inference-Makers. T]uq: left-
hand side of this equaticn represents the risk of makinga 'l Ypf: I
mistake, The first tcrm on the right-hand side indicates the risk
of a Type I error (in the technical sense) . The 111{n1§rical value
of this probability s determined by the rule for inference that
is used and can be set at any preassigned value (more or less).
The second term on the right-hand side, P (H,),1s the probabil-



224 DESIGN FOR DECISION

ity that there is no difference between treatments (ic,, 77 is
true) . This second term, the prior probability, is the one which
causes all the trouble.

The prior probability itself is blameless—it is a perfecily re-
spectable probability with a sensible interpretation in terims of a
series of experiments. However a numerical estimate of this prior
probability may be obtained only from a serics of (:‘.X}}Q‘J'imt!n\ts;
it cannot be obtained [rom a single experiment.

Sir R. A. Fisher, creator of most of the current statisrif;'aimcth-
odologics, has advocated the principle that the analdyls of ex-
perimental results should be self-confained. In oger words the
inlerence from a sct of obscrvations should ingél¥e those obser-
vations alone and should no¢ involve any prioy data. licre is a
grcat deal to be said in favor ol this plln\lp]e, and it has been
widely accepted. But if the analysis igto Phe self-contained. the
prior probability cannot be estimatcd’and hence s an unknown
quantity; the risk ol a Type I Imque cannot be assessed; and
there is an impasse. o dbe aLﬂ}bl ) ey org

The way out of this impasse which has been taken by most
statisticians is to adopt_ Lhe loss-control philosophy and argue as
{ollows. The worst ‘;n,u‘auon insofar as making Type It istakes
is concerned, is f \rhe treatments studied always to have the
samne eflicacy. If @xule for inference is lormulated which will lead
to Type | misakes only 5 per cent of the time even in this worst
situation, ghen the rule can be “safely” used in any situation,

In th€ @orst situation the risk of a mistake is the same as the
risk Q‘%lrox since P (J1,) = 1; therelore, il the risk of a Type 1
t.rr\or ‘is ixed at 0.05, the risk of a Type T mistake will automati-
“eatly be controlled. In practice, then, the specifications for an
Inference-Maker are given in terms of the errors rather than the
mistakes.

Specification 1: Conirol the visk of ¢ Type I error at 5 per
cenl.

Specification 2: Subject to the first specification, make the
risk of a Type 1 error as small as possible.
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The distinction that I have drawn between errors and mis-
takes may be clarified by considering two series of cxperiments.
The first serics is the work of Dr. Dub who has no lack or skill
in sefecring treatments for testing, that is, all the treatments
which be chooses are no better than standard treatments, so
P{H,) == 1. When Dr. Dub uscs standard Inference-Makers he
makes i ype | mistakes 5 per cent of the time. On the other hand{"\
Dr. Shavp always manages to select treatments with a real adman-
tage over standard therapies, so P (I7,) = 0. Although Dr.Sharp
uses statistical methods where the Type I error is b ngﬁent, he
never makes a Type I mistake. Thus despite a fair'l}f.i\-'ic‘lespread
belief ro the contrary, there is nothing in curreng staristical metb-

ods that condemns a rescarch worker to make fistakes 5 per cent
Y

AL

of the rime.

4

Significance Tests N\

The next problem—and this isla fechnical one—is to con-
struct actual rules farvinfeeneb:ivgich, will mect these two
specifications. Although thistis a job for a specialist, the prin-
ciple of construction is so.s“imble that I can give it here.

First of all, we supp?b% that there is no difference hetwc.cn

trcatments (H, is tr{}e\; “and we shall therefore be working. with
conditional proba‘ﬁi]ities of the type P($' H,). Under t.h1s_ hy-
pothesis we want’to divide the set of all possible samples into
two parts’—.\t'h\e" unusual samples (technical%y the critical re-
gion) an@;the remaining samples. The job 1s to construct thle
aritical\egion so that the rulc for inference determined by this
C}".iti'(f%i[ region will meet the two specifications given above.
\J shall .‘;uppose, for simplicity, that a model has been set up
and that, with the assumption that I, is truc, the 'numencal
values of parameters of the modcl are known. In this (‘.ase,.we
can calculate for any particular sample, say S, tl{e _numerlcal
value of P (S; ' I1,) . We then proceed to do just this for all pos-
sible samples.

Next, T will supposc tha
tween the two treatments (
culate the numerical values of P (S¢ | Hu)

¢ there is a specified difference be-
ie., H, is true), and that T can cal-
. Therelore, associated
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with any sample, S;, T will have two numbers,—P (§; ' 77} and
P(S: | H,) —and these two numhbers can be used to calenlare the
probability ratio (p.r.) assoclated with S;. The probability ratio
is:

p.r. () =

P (S| HY

N

Now what does this probability ratio mean? If the zaio is
large (somewhat greater than one), it says that the prok é}ﬁhty of
the sample if I1, is true is greater than the probability of the
sample if H, is true. This is more or less what “"@.fn’é‘an when we
regard a sample as unusual under the null hﬁ(iﬁ'or.l'ms_i.& Clonse-
quently it would be scnsible to construct theist of unususi sam-
ples (critical region) by the following riles:

4

(1} Rearrange the list of all possible samples so thar the first
sample, S, has the 1arg(;'s,t’pi'obability ratio, the seeond
sample, 8, b3 S MU AR {35ge4 ratio. and so on down
the list. N

(2) Beside the ithgsample in the list write the maunber
P(S, M.

(3) Starting at\ké’fop of the list, add the quantities £ (S, | H}
until the'total comes to 0.05 {or as ncar to this value as
possthlC) . We might, for example, have to add a num-
bj:\)f,\é'; of the conditional prohabilitics until

,'J@"('Sl VHY) A+ P(S, |Hy+ -+ -+ P(S:'Ho)
) =S P (S, | H,) =005

\ .
3 i=1

{(4) The critical region (i.e., those samples where we will
reject ) will be the list of samples §;, S, + = = See

I have given the rule for constructing a critical region when
we want P (I'ype I error) = 0.05. Il we wished to control the’
Type 1 error at 1 per cent instead of 5 per cent we would inclade
samples until the sum in the cquation above (3) werc equal
to 0.01.
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Thesc swiles lead to a rule for inference which meets our first
specification because the type I error is the chance of rejecting
H if IT, is true. We will reject H, only if our sample [alls in the
critical region and, if T4, is true, the chance of this happening is

4
Z P (S, F), which has been fixed at 0.05.
i=1
The rizles also insure that the second specification, i.e., that,

P(Type T1 crror) is as small as possible, is met. I will not try,to
demonstiate this point although the proof is easy and docs not
involve any fancy mathematics. Since the proof is an "(,-‘kﬁrcise
in the translation of common sense into mathematics{ Fyuggest
that you: try to make the proof {er yourself. "The t ik is to con-
sider wizat happens if any change is made in thégritical region
given ahove. For the new critical region the first specification
must still be met [P(S H,) = 0.05] bgl’\:}? S| H,) is altered.
Since the new critical region includgssamples with a smaller
probability ratio, you can show th’a,l;'.“th“e quantity P (S | 11,} can
only be decreased. l"hwqumqm,ﬁgéyﬂg) s called the powcer
of the tost and represents thejgfhénce that a Type 1L error will

not he committed.

&

xm\
+8 3

Testing Two Trexmrems
The principles afeonstructing a significance test discuss(_:d in
the last sectionwill now be used to obtain an actnal technique.
What I 1-\-‘ish~'t};“s:hnw is that although the construction of a test
of ll}-‘[)(‘)tlf\&éc.\:ihis rather complex, the end product is very simple

to use, \'
mc.ﬂliki(‘{er once again the testing of two tr T
The results of this experiment consist of ten nulmbffrs (¥s),
which have been obtained by subtracting the patient’s titer on
the standard treatment from the corresponding titer on the nfrw
treatment. The details of the design used (page 218) would -
fluence the actual analysis, but in what follows time cfiects, etc.,
would be neglected. .
Tao Keep matters as simple as possible I am going to malf‘e two
assumptions about the model. T will assume that the ¥'s are

eatments for allergy.
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samples from the normal distribution {discussed in the previous
chapter) . 'This is not a very drastic assumption because I know
that if I draw two samples from the same population ol imeasure-
ments, then regardless of the natire of the populatian, the dif-
ference will be symmetrically distributed. Hence the normal dis-
tribution should provide a fairly good approximarion.

My next assumption will not be generally true. [ any gomg to
assume that from past experience we know the precisign of the
measurenments. In other words, I shall assume that t.i.itf‘sghndard
deviation of the normal distribution, o, 1s kno“-'p:*w me and,
further, that this standard deviation of the }”;”§‘i's": numerically
cqual to one (o= 1). This second assumpl:iw'qﬁ"can he avoided
and is not used in the standard statistical m¢thodologics which
deal with this problem. N

The two standard hypotheses: x\ v

4 N
II,: There is no difference in the eflicacies of the two treatmants

H,: There is a dilference inade® cilicacics of the two freaineints
www_dbr‘quﬁibrar‘y_org_in

are cquivalent to the f&l‘iﬁ&wing statements about the location
parameter, p, of the n\drma] distribution of the T7s:

\\s..: Hoflr_(_ﬁo
N I o 0

3

In other x-x*d‘rﬂs, if there is no difference between irsatyments
then \\;’E‘\xi\\;{.ﬂd expect that in the long run the average value of
the\&ﬁﬁ‘c!’i'ences between counts (¥’s) would be wero,
.j'Unde.r the null hypothesis we can write down ar GHee the
~(probability that, for the lirst pair ol patients, tlie difference
\ ‘between the counts will he between Y, and Y, 4 d¥,,

—3¥"
2P (V)| H,) = “—d¥y
v Aw

where this formula comes from formula (12.01) on page 202
(p=0andec=1).
Assuming that the ¥’s arc independeni, it is a very simple



STATISTi AL INFERENCE 299

matter 1o write down the probabi]ity of the sample (ie., the
probabiiiny ol ¥y and Y, and the other ¥'s up to Yo} Tt is only
necessary o multiply successively the quantities like dP (¥, | H,)-
Using $ for sample, and taking advantage of the fact that e*
times ¢” 15 cquul to git+? we have
—HYIETEL o+ T
RS
This result when properly interpreted can save us a great deal
of work. Notice that the only way in which informatiomfrain
the saraple enters equation (13.01) is1n the sum ol squares of
the ¥’s. Let 4D
~\
T:Y%+Y§+"'+Y§O..:
. N, .
What formula (13.0I) tells us {though B Cannot go 1nto all
the details here) Is that if we consthdcy a rule for inference

based «nly on T it will he just as, good as any other Tule for

>

inference which considerec& all I.I’P ssible samples of ten observa-
wiarw .d braudi

£

(1301 dP(S|H) = (product of d¥’s).

: Fary.org.i R
tions. [ other words, we can }:oncen}'ra]tg M.y attention en the

single statistic, T, instead ol ﬁaving to worry ahout ten numbers.
Even with this simp}i{-g‘ation we could not literally carry out
the procedure for ’s@iétructing a critical region described in
the last scction. EOx one thing, there is no limit to the number
of possible samp;l’e’s“ (i.c., values of T) which might be obtained.
The }““occd.l,'ﬁ;e'can be followed in principle by using calculus
—I sh 1ll\(lBT ‘g0 into this—and in this way it is possible to ob-
tain spch yuantities as P(T | H,) and P (T | H,} . There are two
points concerning P (T | H,) and P (T | H,) which I think can
\Qe‘:determined without mathematics. When there is no differ-
ence hetween the treatments We would expect the ¥'s to be small
and conscquently we would expect the T"s to be small. B_roadly
speaking, if T is large, P (7 | o) will be small, while if T is
sall, P (71"} H,) will be large. When there are differences be-
tween treatments then we would not expect T to be small.
Hence if 7 is small, P (T | H ) will also be small.
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The probability ratio, P(T VH) /P(T ' Iy, will therefore
be large when 7 is large and small when T is small. In construct-
ing our critical region we would therefore include those smples
in whiclt 1" is large. The critical region can be described rather
simply; it consists of those samples in which 7" is grezter than
some constant, K (Le, T > K).

The constant X will have to be chosen to meet the spegifica-
tions for the rule for inference. The probability that = sawiple
would fall in the critical region is equivalent to the l}l\‘cﬁag}bi]ity
that T is greatcr than X. In symbolic terms this comdition on

N
77 %4

K is simply R
P (T isgreater than K | H ) :{9\93

This equation takes some fancy mathematics to solve but it
turns out that for ten patients the va.l.n:tio[ K is 18.5.

The construction of the test max ke difficult, but the tost is
very casy to use. All that needs"tr_’)"he done is (1) Lo ilate
T (which will meagéggmiﬂg;ﬁ[:gb}f&.gm adding the squares),
and then (2) to see it T isigreater than 18.3. If it is, this rule
for inference says to reject H,, that is, the doctor would state:
“There isa ditfercn'{{‘e]setwccn the two treatments,” If 1he doc
tor uses this rule %0r Inference in a scrics of experiments, and
if therc never is(any difference between his treatments, the rule
for infcrence.wilf lead him astray only 5 per cent of the time.

Suppogeg\irtjx-vever, that 7" is less than 18.3, What can be said
in thit{‘f{’ls\c‘?’ The consensus of opinion among statisticians seems
to hﬁ'ﬂ}&t we should say nothing at all. Some statisticians would
Il}aigé'a statement such as “No difference between treatments has

Qiﬁ"en demonstrated,” but this statement says nothing about the
parameter p and is a description of cxperimental results, nol an
inference. Consequently, this sort of statement can be made
without risk of ¢rror of inference.

Some research workers have wanted to muke the statement
“There is no appreciable difference between treatments” if
their value of T was smaller than 18.3, but this is risky in the
sense that there may be a large error of the second type asso-
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ciated seith this statement. Most statistics texts have warnings
in boldface tvpe against the making of such statements.

While such warnings are well justified from the standpoint
of avoiding statements which are likely to be erroneous, it is
not cntircly satisfactory to refuse to make any statement. True,
as long as wo deal with statements it is plausible to allow situa-
tions in which no statement is madc, but when we think in
terms ¢! action this easy way out is no longer possible. Some sorf\
of action will have to be taken in the situation. A

1f the doctor who has studied the two treatments co.m'e?;"aut
with « ¢ less than 18.3, he must make a decision as @ his next
step. Perhaps he will abandon work on the new gr?aiﬁnem. In
any event, the information in the experimentawitl be used to
sclect a future course ol action. '

"Yhe statement “There is no appreciabjédifference between
treatmenty’ would be associated with théaction “Abandon work
on the new trearment.” It is rather @oddemic to refnse to make
the statement but to take the copesponding action. I shall come
back (o this point latwei‘"élt‘fllf{i‘?‘tﬂfﬁ"&!’]‘&ﬁf@"!“

The Role of Significatice Tests

K ) . ) )
1 iope that the Rt@c’mathematlcal manipulations in the last

section have not)distouraged you. The main reason for inc]‘ud—
ing this rrlatgﬁi;ﬂ"was to provide a sample of t.he. tt‘.(‘.l%l“ll(‘_al
phase of thesubject. The Inference-Maker thus obtained is the
closest QE]??O&(:h to an operating mechanism that I cap give 1o
this hdok. ‘
'I{f[érence-].\*‘lakers of the type just discussed are very useful in
“theprocess ol Statistical Decision. For one thing, they serve to
\ﬁll in a gap in my discussion of models. You may recall that I
postponed consideration of the Jast step in the role _Of tf}e model,
the testing of the model. The techniques of statisFlca! inference
may he used to deal objectively with the question: Does the
model adequately predict the test data? If the sample (icst da‘ta)
falls in the unusaal category (critical region) then we reject

the modcl.
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Many statistical textbooks spend so much time working up
to a discussion of tests of signilicance that such tests would seem
to be the uitimate goal of statistics, Theoretical presentations
also tend to give this impression. However, insofar as the con-
struction of Decision-Makers is concerned, significance tests are
only a preliminary technique.

It we want to set up a prediction systern we will have to
choose a model as a basis [or the system. Significance tostwill
help us to choose the model, but from the standpoin{of deci-
sion our eventual purposc is to use the model thd(Mhas been
selected. 'This detracts In no way from the irnp(gﬁi@ﬂf:(r of tests
ol significancc because the first links in the Rain are just as
critical as the later links. I do want ta cmph@size, hiowever, that
significance tests are not a stopping p’ofkn:t but are, ivstead, a
starting point for an investigation. ¢°(

Perhaps if we consider the doctgf and his two therapies this
issue will be clarified. Supposc t.}}ai:'the doctor perlovms 4 signifi-
cance test and rejecwat\{}%Q%Eﬂﬁil}gggzscﬁlg_i%thc two trealiments are
equally effective. This 1s hatdly a Stopping point. Granted that
the two treatments are different, this immediatefy raises the
question: Which treafiient is better and how much better is it?
Later in this cha bér] will discuss the statistician’s answer to
this sort of question, but even if the answer is given we still have
not reachedsalstopping point, We will want to answer questions
regarding'@i.u" future actions such as: Should the superior treat-
ment k\ctg‘f(«'en routinely in this hospital?

Aldhwugh it is convenient to treat each stage in the process of
flt‘éiﬁﬂﬂ 43 a separate entity so as to have, at each stage, a prob-

\’”‘!\;eni we are capable of solving, it should not be forgotten that
each stage will be followed by another stage and that we are
dealing with a sequential process.

In my discussion ol models I indicated that the choice of 2
modcl for a predicting systern is a creative process. While this
means that the selection of the model is more or less arbitrary,
there is often a pattern—but not a rigid one—to the process.
‘This pattern represents a compromise. The real world in which
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we live 15 a very complex affair but, for practical reasons, the
models whicl we will use will have to be fairly simple. Hence,
in choosing a model we compromise; we generally ty to get
by with the simplest model which will serve our purpaose.

The principle of using the simplest effective model has been
given various names such as the principle of scientific economy
or the principle of simplicily. The ancestry of this principle
goes back to the medieval theologists, such as William of Occam{ ™
who propounded the rule: “Never multiply entities wi't.lgf)\ut
necessivy.” N\

The zpplication of the above principle to the cp‘r,t's‘t“fuction
of a prediction system leads to the following generab\approach:
We do not start our construction by trying to tak}sTnto account
every possible relevant factor. We start with $he'simplest model
that none of the tactors is relevant. If, injt}fms of significance
tests, this hypothesis does not lead gecadequate prediction, we
grudginzly add what secms to be tig)most important factor to
the model. Il the model is stilldhadequate, we reluctantly in-
troduce additional fa‘fé‘é‘f’s?lb‘:@.m.ihra"y'org'i"

At cach stage we have a_riredel pitted against a more complex
medel. the simpler mg@ei being associated with the null hy-
pothesis. 1[ this hypOsHesis is rejected we go ot 1o the next
stage. Signiflicance %&ts enable us to determine, in a relatively
objective 1'ashjq"ri," the degree of complexity which is necessary
for the mod&lﬁl’hcy therciore play an important role .m guiding
the sequéitial process ol investigation to thelchou:c of the
modeldMiich will ultimately be used in the Decision-Maker.
"'~;'E}stimation

1t the doctor demonstrates that there s a difference ben\fecn
the two thierapies, he will want to go on to the next question:
How much differcnce is there between the two treatments? I
the new therapy is very expensive, and if the advaptagp is SI‘Ela]],
then (he use of the new treatment may not be justificd. fh‘e
problem of “How much?” is called estimation, and this topic

1s the sccond major subdivision of statistical inference. There
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are a number of dilfercnt approaches to this problens and 1
will describe only one, the method of confidence intervals.

A conflidence interval is a rather cagey stalemeni zhout a
parametcr. It dees not give a single value as the estimate of the
parameter; rather it gives an interval or range of values and
says only that the actual value is somewhere in this range.

If I made repcated measurcments on the length of a rod then
the confidence interval statement that I might obtain wwauld be
of the form: This rod is between 72,3 and 72.6 inches Hohg.

The procedure in sctring up such a conlidencaivrcival s
quite similar to the method for constructing a ‘al“ﬂ‘u cance test.
1 first state certain specilications which I 1’(.(11],11 &bl my rule lor
inference—perhaps that the statements magle® }5\ using this rule
for inference will be incorrect at most Japer cent of the time.
A second specification would be that Llfl;ﬁ?st’ang"c!, or fength of the
interval, would be as short as pmsil’)’l}

The actual construction of an Appropriate rule for cstimation
proceeds more or less along th&same lincs that were described
in conncction with"t¥sts ib)Fasm_oi]rnllfﬁcsﬁm% One major dificulty in
the construction process :___and this also applies to signilicance
tests) occurs when a §uisance parameler is present. Nujsance
parameters arc thegarameters of the mathematical model other
than the particujlk‘ ong we want to cstimate, We can usually
obtain (by Tathr_*r direct mcthods) upper and lower limits for
an intervg “huh will meet the 5 per cent specification but
which mqfortunarelv, involve these other parameters, Since we
do nu’hﬁnon the numerical valucs of these nuisance parameters
we Cannot use Hmits of this type to set confidence intervals, but

"“&O.I’[l(,tln'lei by a little mathematical legerdemain, we can get rid
of the unwanted symbols.

Once again it should be remembered that there is “nothing
for nothing” in statistics and that confidence intervals are sub-
ject to definite limitations. If the risk of errov is made very
small, or if the obscrvations are erratic, or if there is only a
small amount of data, then the interval will tend o be a wide
one. In fact, the interval may be so wide as to be useless for



STATISTICAL INFERENCE 235

practical purposes. IE T know that the length of a rod is between
9 inches a1l 200 inches, it does not help me to decide whether
the rod can be used as a crossbrace in a chair.

T emphasize this point because there is a rather widespread
misconceplion concerning what modern statistics has achieved
in connection with what are called small samples. In the early
days of +1atistics approximate tests of significance and estimates,
were developed which worked out well when very large samples
were used. When these methods were applied to small sapiplés
{samples with between one and thirty observations) tie) tech-
niques wwere no longer valid. In other words, if thedspecified
risk of ciror was 5 per cent, these large sample techziques might
have an actual tisk of error of 6 per cent or even)0 per cent.

In the first quarter of this century new riles for inference
which were valid even when used on vei‘§(\sfnall samples were
developed. "These new technigues, théGart of modern statistics,
have been given a heavy emphasis by up-to-date teachers, but
unfortunately some %M%ﬁ%ﬂ%@%‘?d»@n get the impression
that the techniques of mode}fri'g.‘tatlstlcsofl‘gd ohviated the neetli to
collect large amounts of'dat’a’, and that small samples were Just
as useful as large samB}e}\ )

This is not at allthe casc; statistical methods do not.ad.d in-
formation, they ¢am only extract it. It is true that valid state-
ments ¢an no,w%é“made from hoth large and small samples, but
validity is Aot all that is required of a rule for inference: the

must alsa be useful. The utility of a statement about

statcmej{(s, '

a pargtneter depends on the length of the con{id.ence interval; a
smal) ’S‘amplc may lead to a range wlich is so wide as to be, .for

Qh ‘practical purposes, completely useless. In many practical
situations the only way to get a useful statement js to take a
large sample.

Tests ol significance and e ‘
sample to statements about the population ;
sample was drawn. This 1s a very jmportant type of infercnce,
but there are other types of inference. Another common put-
pose of inference is to classify individuals. The Great Deteciive,

stimation enable us to go from a
from which the
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for instance, wants to classify one of the suspects as a murderer;
he is not concerned with making statements abous riwe popula-
tion of murderers.

This phasc of inference has been considered by statisticians
under the heading of discriminant functions. In my opinicn this
topic has not yet received the attention that it deserves.*

Decision \

The inferences of the Great Detective lead to d(_“( i Tf the
Great Detective belongs to the grand old school ha md wait
until his risk of error is ncarly zero; il he is a nu;ssuil‘-a.] modern
he will operate with risks of error at 20 per ceitor even 30 per
cent and rely on his fists rather than his facth/In any event, the
climax is reached when the Great Detegt\w points his iinger and
proclaims: “That is the man who diddlte deed!”

The accusation is an action, ané this clioice of action leads
to rather evident consequences. L'he individual so charged will
be hung, electrocutgd‘,\p_a@Q@gﬁﬁﬁéﬁ@_@@lﬁ to realize that “crime
does not pay.” Tlanging. an innocent individual is generally
regarded as an unpleasant L‘.nnsﬂq;wru:c not merely Lor the in-
dividual, but also forthe Great Detective, who would surcly be
professionally cmBawrassed if this occurred.

In the inferefide of the doctor concerning the two therapies,
or in any othefnontrivial inference, there will be a consequent
action and}uch action will have desirable or undesirable reper-
Cussior (This issuc can be dodged temporarily by adopring a
loss,comtrol philosophy, by using a Simple Value System, and by

usRig specified risks of error (such as the 5 per cent level).
\Ultimately, however, it will be necessary to judge a rule for
inlerence by the consequences which {ollow {rom its usc.

This point was raiscd in connection with the medical exam-
ple in which, if the sample did not [all in the critical region, ne
recal inlerence was attempted. But it was still nccessary o take

* But the siwation is improving! A good discussion appeuwrs in Rao, G. R
Advanced Statistical Methods in Biometric Research, John Wiley & Sons, Inc.,
New York, 1952,
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some action-—either 1o continue expetimentation with the new
therapy ov to abandon it—-so that although the problem could
be dodged at the verbal level it could not be avoided at the prac-
tical level
In pure academic work 1 sappose there is more damage to a
person’s reputation from making an cIToneous positive state-
ment than from failing to make a positive statement which
could have been made. To this extent, the preoccupation withs
the fisi rvpe of error (erroncously stating that there was a.dif
ference between treatments) would be justified. But fpr\'é‘cién-
fists who are not so pure it may be even more serious, to {ail to
vecomend a treatment which might save additiondl Tives.
This problem is cspecially critical in 111&(1i(:gl?\e‘séarc}1 where
it is oiten both difficult and expensive 10 dd\large experiments.
A depressingly high proportion of acglggx.béxpcrin1cntat.i011 is
{utile in this sense: If significance testdare ased on a limited
amount ol data there is a very poof shance (perhaps less than
10 per cent) that appreciable ,aﬂi-antagcs will be detected by
the caloulations, m-ro‘EE"(%‘fC{‘Pf@g%ﬂp@ﬂmmm)t‘ this type will lead
io resuls from which no iftfetence can be made.
There is no casy solGHOD to this problem. One possibility is
to do more exten ~'\afé~c’xperiments oT o try to arrange cooperas
five experimentn which data obtained by different 1nvestiga-
tors can be pQ’tftogether. Another possibilit}J is to change the
SaCI‘Osanct.K}jer cent pmbability level to 10 per cent or even
20 per re}at Tlhe point 1 wish to make is this: 1 do not think
that chly type of problem can be handled within the framework
of elassical statistical theory. It ¢ necessary to broaden the [rame
“aFrelerence, to introduce the concepts of Statistical Decision
and, unpleasant as it may be, to face up to the problems of the

Value System.

Summary

¢ the same general principles as
4ol pr(ﬂ_)abilitics, intuitive proc
d into more objective rules for

Statistical inference follow
everyday inference. With the a)
esses of inference can be converte
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inference. The two main categories of statistical inference are
significance iests and estimaiion. Fxamples of the theoretical
and computational procedures for constructing significace tests
are given. Some ol the lmitations of statistical inference are
pointed out, and it is emphasized that a broader frame of refer-
ence, Statistical Decision, is needed in order to deal with the

problem of inference.
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Tools of the Trade O\

A carpenter needs to know about the natute of)ﬁs matcrials
and the principles of construction, but to bhuildan actual table
he also needs hammers, saws, and other tp6ls. Tn the samc way,
if we want to make an actual decisiofi yve will need specific
statistical tools as well as general’pﬁﬁciples. While Iﬂo not
intend Lo go into thcwg;%l_?g}]ilggtu !grdaelz of Statistical Decision in
this book, T would like to prdyrde LYiShE " information about
the statistical tools to allow 3h interesied reader to pursie the
subject further. Therg’.lfﬂ}e in this chapter [ will list the prin-
cipal tvpes of tools ;}Qﬁ"indicate their uses. References (o these
tools will be foupdin the appendix.

In the last ﬁq’p}r';-egt1‘s statistical methodologies have prolifer-
ated ut a peadigious rate, and important new tools are com-
timla“}".*i&ihg developed. There are, roday, so ymany special
ied in character, that it is no

2 & . .
tools. @il these devices arc so vat
of the cxisting methodol-

f";lf@"iﬁatter to decide which, if any,
‘QS;GS are appropriate for a given problem. The concepts of
Statistical Decision serve 1O integrate the varicus special tech-
niques and therclore the decision point of view makes the
choice of an appropriate too! somewhat casicr.

Most practical decision problems will be much morc con.1plex
than the litile examples which I have presc:m('rd; they \\il]]. be
decision chains with many links. Each link wil.] be a disttmct
problem and consequently many different statistical techniques

254
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may be required to handle the practical problens {just as a
carpenter would not expect to use only one tool in building a
tabley,

I shall conline the discussion of tools to those devices used
m the construction ol the Prediction System of the Decision-
Maker. As we have already noted, the fabrication of an ad-
vanced prediction system has two phases-—modelmakingsand
data-gathering. Successbul prediction usually requires an bter-
play between these two phases, but for purposcs of;.gitp(\;sir.ion
I will consider the two scparately. W >

First, I will consider the techniques which deal Wil the eval-
uation of data. I have previously cmphasig‘f@&’i:hat it Days 1o
scrutinize critically the procedures used wneolleciing the origi-
nal data. The quality of the data which fuels the Decision-Maker
often determines whether the mech;&{iism is successlul or not
The determination of the qualitpot’the data will involve dil-
ferent techniques for classification” data than for measurement
data.

o\
wwwd br‘qL[T ibl'ar‘y .org.in
al 7
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Classification

It may seem obv’iqugto you that when classifications arc used
the very first stepihould be to see if the classifications arc any
good (ie., Uﬂbi?l:}i, repcatable, and relevant) . I may also be
evident to ydulythat il the classifications arc inadequate 1t is
rather ful;%l@ to collect great quantities of this defective data.
Yet straigely enough, there are many investigators who never
try tolcheck up on their methods of classification.

..{‘it"'the very least the individual who makes the classifications
“shrould be able to agrec with himself. It olten comes as a shock
\to investigators that, when this question of sclf-agreement Is

cxamined, the results indicate that the investigator does not

even agree with himself. As an example of the use of statistical
techniques to answer questions about sell-agreement, 1 want
to consider the [ollowing (rather commony} situation in medical
research. It is customary to use X-ray films to determine the
severity of discases such as tuberculosis. A doctor will examine
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a series of “-ray plates and classify them by degree of severity
as (say) wild, moderate, or severc.

To checl: up on the classification system the doctor might
read a serics of plates and then, perhaps a month later when
the original classifications were forgoticn, rcad the same series
of plates a second time. This little experiment can be presented
as a confingency fable (Figure 14.01) . The name contingency

First Reading

N
Mild  Mederate Severe \' \\
Mild ) N
Second N
F-'.eading Moderate i .\\
Severe

. \l’ =
Fig. 1401 Contingency ‘Table for Examm@‘g Repeatability
of Classifications™\

table arises because all possible (,dr:itingencies Or Outcomes are
given in the table. w“’“’-db"glﬂ}bral'y_org_m
The tally shown in I*"igu'r:é'l‘}.()l would correslpond to an
Xeray plate which wag,@ead as mild the ﬁr_st time and‘ as
moderate the secon tQ"né. Each plate in the series can ht?. tall'le.d
in some cell of the~i§)le. If the doctor always agreed with him-
selt, all the tali’i{réiﬁ-\;ould fall in the main diagonal of the table
(Le, mﬂd—m&{d,’ oderate-moderate, €tc.) - Such perfect agree-
ment is rqdy encountered in actual experiments, however, and
ordinarilys there will be tallies in most of the cells of the table.
Va‘:i"\’ilfs" statistical techniques have been developed for Furt}‘ler
ﬂ:"{]’}'éis of contingency tables and in particular for measuring
the degree of agreement. Often, however, a glance at the con-
tingency table will suflice to indicate th
fication is in nced of improvement. “ o
Not only should the investigator 2g7ee with himself, but 1t 15
also desirable that he should agree with his fellow experts. ”I‘he
agrecrnent hetween two doctors might be studied by having
them read (independenr_ly) the same serics of plates. A con-

at the method of classi-
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tingency table which would display the results of this further
experiment could then be constructed.

Agreement as measurcd by the two previous experiments is
closely associated with the concept of repeatability. Bur re-
peatability 1s not the only criterion for judging the qnality
of data. Suppose that the patients in the X-ray serics sre brought
in for an intensive medical examination. Then these patients
might be classified as mild, moderate, or severe on the }.'J&SR of
this further study and this sccond classification might™ht con-
sidered to be more reliable. If this examination ¢assihication
is taken as the standard, it would be possible to u nipare the
X-ray classification with this standard. It mloht be found that
the Xeray readings were biased in the sense {Tht the Xoray classi-
hcations were consistently more severg shin the exsmination
classification, or the bias might be ifdthe other divection. It
might also be passible that the X 1«1\\113551ﬁrauom were irrele-
vant for the purposes of the ulvesﬁmrlon The statistical tcch-
niques for testing relevance wili¥e discussed later.

I do not want f‘(’)‘”’g‘?’ne G Pe560h that the conringency
table is the only statisticAbtechnique For dealing with classifica-
tions, but it will ser\ e\as a point of entry to the literature.

Measurements\\

It has beew? cmphaﬂzed in this book that quantification, the
rep]&umth ot words by numbers, is a key step in science, The
advantages’ to be derived from quantification are not inherent
in tht%}numbers themselves, The use of numbers and measure-
mcms does not automatically improve matters—the measure-

% ~mmt must prove its worth by the standards which have already
been applicd to classifications.

This point deserves some emphasis because of an increasing
tendency of some scientists to use numbers and statistical tech-
niques as sheer window dressing, as a device for adding a tone of
scientific respectability to trivial papers,

Numerical methods are a tool and, like any other tool, they
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can be wsrd frivolously. A buzz saw is also a fascinating tool,
but the utility of 2 buzz saw is not intrinsic. A person can use
2 buzz saw to slice worth-while timber into waste ends and
sawdust, The merc {act that a person is running a buzz saw
does noL 'iean that he is a good builder. The mere fact that
an indivicual uses numerical analysis or statistical technigues
does not nizke him a good scientist.

It will be necessary, when working with measurements, to
study the quality of these measurements. The first step, .'{'S»\tc\}
examine tiie repcatability of the measurements. If the measure-
ments are approximately normally distributed sk 3Chap-
ter 12y, the variance (or standard deviation) qf,fgépeatcd ob-
servations can be used as a measurc of rcpeatability.

Frequently a measurement is ohtained by a'series of opera-
tions. Measurements in chemistry, fot ‘eiz;sai‘“nplc, are often ab-
tained Ly an elaborate process involijing pipetting, titrating,
weighing, and other operations.,Wc can think of the actual
variation in the final mgistiftrasibascomposed of contributions
from a number of diffcrent sohrces of variation. Some of the
operations in the procgs{’“may introduce large e?{perimental
errors, while the co t@lmtions of the other operations may be
negligible. An imp:c}cment in the measurement process (1:e.,
a reduction in x\?aﬁéltion) may follow if the operations with
large (rx}')(:riu\éﬁtal crrors can be improved. It llS of interest,
therefore, t0ydetermine which operations are major sources of
variatio m':\\ 3

Thelklatistical techniques applicable to this pr(?T)lFrn fall
under (he heading of components of variance which s, 10 turn,
fNJért of analysis of veriance. wWith the aid of these Tnc_thodol—
ogies, the contributions of the various sources of variatien can
be assessed numerically.

Questions concerning bias
by the methods of analysis of var
tained may be used to improve and stan
processes.

and relevance arce alse elucidated
iance. The information thus ob-
dardize measurement
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Recording and Storing of Data

Every ficld seems to present peculiar problems in the re-
cording and storing of data. Most of the discussion of this
topic will be found in the field of application rathiey than in
the statistical literature, Latcely, the development of the elec-
tronic brains has led to wider interest in problems of reegicling,
storage, and rccovery of information. Current research{™yay lead
to a systematic body of knowledge on these qu;ri"r.\i(}::l}; which
will go beyond the “cut and try” procedures cugrurfly i use.

There is one device which deserves specialpmention m con-
nection with recording and storing proce.th‘xres. It is usually
worthwhile to make a preliminary studg\Y ‘dry rue” or “pilot
trial”) as a test of procedurcs beforefany large scale collection
of data is set into motion. ,\

The collection of data may be divided into three caregories—
experimentation, surve%s, amji :éy'stelllatic observation. The dis-
tinction is some\‘%{Hz‘i‘E‘dai:?}&&bz{?}}‘y:ﬁgﬁ'mexperimentati(_;-n is dis-
tinguished from other “methods of collection mainly by the
dcgree of control which' is exercised.

Experimentqths\n

There age\“é“ number of diverse statistical techniques which
fall undgi\the heading of design of experiments. These tech-
niqueg'are often simple extensions of common sense, Suppose,
for £ mple, that you were in the shoe business and that a new
edmpound had been developed for making soles which was
~\stupposed to be [ar superior to materials currently used. You
’ might want to test the ncw compound by making up a batch of
shoes which differed only in the composition of the soles and
then giving these shoes to various people with the understand-
ing that after a fixed length of time the shocs would be brought
back and rated as to amount of wear and other cliaracteristics.
Obviously different people will give different usage to the shoes.

How can this factor be controlled?
A common-sense way of meeting this problem would be to
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make ap pairs of shocs, one of which had the old sole, while
the other had the new sole. This pairing process would lcad to
a berrer comparison of the two materials. 1t would also be com-
mon sense to put the old sole on the right shoe hall of the
time and on the feft shoe the other half of the time. This would
controt inequalitics in wear which might occur between right
and left shoes.

In the design of experiments the devices for contrel of sources
of variability are extended to much more complex situatious.
For example, suppose that we wanted to test three or fagspew
compositions to see which one made the best soles. 16gou like
pizzies you might try to figure out a design for thigtrew experi-
mment which would control the variation duc;{o;’the different
amounzs of wear lor the different people. NV

The development of techniques for, picnt and well-con-
trolled schemes for collecting data is ofictof the most important
contributions of modern statistics. \V

")

Sampling Surveys, o, d bl'@LﬂiBT:al'y.org_in
In principle the collection of data by a survey, such as a
public opinion surveyd is closcly allied to the collection of
data in laboratory ﬁg“{p\erimentation, but in practice the prob-
lems encountereé\)fé so dissimilar that it 3s converient to
treat thie two pr';:)t:cdures sfrparateiy. Farlier I remarked on the
care that mitst’be taken in drawing the sample. The sampling
prfﬂ'ﬂmn.{;}{“eatcd in detail under the heading sampling survey

lech 1 1@1(5

Sapipling is not the only problem in a survey, and sometimes
»«ft;\fs’ a relatively minor problem. 1t may be more important to
NAhoose the questions In the survey with great carc and to con-
trol the methods of asking these questions. There are a great
many other problems associated with the survey method, but
unfortunatcly in a good proportion of surveys these problems
are either ignored or treated with disdain. As a consequence the
survey method has a rather checkered record of per.formancc.
I do not want to give the impression that a sampling survey
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is not a useful instrument—I only want to emphasize that it
is a tricky one. Surveys have been uscful to the government
(estimation of population and resources}, to business (con
sumer reactions), and to science.

Summarizaton of Data

The traditional statistical techniques have been developed in
connection with problems of summarization of daia. Frou the
standpoint of Statistical Decision, however, it is s’tg\z?‘\uvhat
pointless to summarize data without taking into aedmint the
use which will he made of the summaries. There has E2on much
wasted work in connection with summarization ﬁmf’tiz:: wly on
the topic of index numbers) because of failur;sﬁsﬁ realize that the
use of summarics must be considered. ’

Elementary statistics texts tend o gorahto tedious detail cone
cerning summarization and to sp(rr}cl&ﬁuch time on averages,
ruedians, rates, ratios, indices, inde'k ‘numbers, and so ¢, This
sort of text gives the reader t.h.e';iiﬁpression that statistics cons
sists of endless and wery d thuihpatiyions vl arithmetic Processes.

In the early days of sulstics there was little more w the
subject than the detail$s of summarization, but things have
changed. There are(tpuch more important topics which de-
scrve attention ngt\\ .

Models \ 4

The ﬁ.tqﬁ.\'t’cp in solving a decision problem is to tey to sct
up _sozlts;sort of model—a verbal model is better than ‘ii('J[hl?'lg.
Thigiprocess of setting up a model 15 equivalent to [ormulating
_theProblem in a clear-cut fashion.

\J When a mathematical model is used, the process of formula-
tion may require not only mathematical methodologies but
also techniques from the subject-matter field. In an enginecering
problem, for example, methodologies from physics and chem-
istry may be necded.

The theory of probability will be a basic instrument in the
formulation of a modcl. Frequency distributions will also play
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a role. 1t probability event chains are involved, then the theory
of stochesiic processes may be useful. All of the above topics
are branciics of mathematical statistics.

In order to formulate a model for a prediction system we

usually take threc steps:

(1) Dwtermination of the factors which are relevant for

prediction,
(9) Tretevmination of the actual relationship of the factors to
the phenomena to be predicted. \)
(3) Construction of a prediction systerl based on, ¢his’ re-
fationship.

The staristical techniques associated with rclt‘:}?:nce can be
divided imto three types. This division is based on the naturc
of the data. The factor which we wish to, predict may be either
a classification ot a measurement, and) he factor which we
would like to use for prediction rgajﬁ'“also be eit‘her a classifica-
tion or a measurcement, The 535%9%?; tg‘bg* considered are:

QS org.in

(13 Class vs. class X N\

(2} Class vs. measurefient

(3} Measuremer t{%.. jmeasurement,

Class vs, Claz-;\s‘n'

Much mcdi(:,é—sociological data will fall in this category ;mfl,
in gencre (“elass vs. class data will be found in subject fields in
1\-'hic1‘1~,fi§c;';uatc Imeasurements are still in the developmental
Stages
“\INét us suppose that we are interes .
We think (hat there may be a relationship bctwei:fn housing
conditions and this particular disease. We may, 11! tlttt:. furst
stages of a study, choose a sample and classify every individual
in the sample in two ways. First, the person may or may ml)t
have the discase under study. Second, the person may live 1n
a house which is substandard ot he may be adequately Flouscd.
Alter the information is collecied it may be presented 10 what

ted in a specific disease. and
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is called a two-by-two contingency table such as the one in
Figure 14.02.

Number of Individuals in Cotegories

Housing
Health Status Substandard Adeqt;ure.\
— e 75 é}\
Not Diseased 1250 .\:&}7\?0
Tig. 14.02 N

7 {

The numbers in this table (which I havcﬂr}lanufa(:ti.u'::d_‘) in-
dicate that the proportion of discased pedple is higher smong
those who arc living in substandard 1’éhs§.ng than among those
with adequate housing. But we sfust remember that we are
dealing with a sample. If, instead’ of considering housing, I had
fli\fl‘d(.,‘d the :samp]‘eﬂl’r‘}{t_gbrt%w;m%'%OTIJ_E_iglpljlng a coin _i.or cach
individual and assigning Afm (o catégory A if the coin were
heads and to category B if'the coin were tails, then I would not
expect the proporti{@f{ of diseased people in category A to be
exactly equal to t&é\proportion ol diseascd people in category B.
But it would gbyiously be silly to regard my flipping a coin as
relevant to e "disease under study merely hecause there was
some diffexenice betwecen category A and category B.

In ofdkr to guard against meaningless association, we would
mqk,}éﬁ chi-square test (or usc some related technique) . First we
sétadp the simplest model: Housing is irrelevant insolar as the
“\risk of a given discasc is concerned. The chi-square test allows as
to determine whether the simplest model can account {or our
observations, To perform the significance test we would substi-
tutc the numbers in Figure 14.02 into the formula for chi-square.
We would then go to the chisquare tables which can be found in
almost all statistical textbooks. If our calculated number turns
out to be larger than the appropriate number in the table (and
if the sampling is unbiased, etc.), we reject the hypothesis that



STATISTICAL TECHNIQUES 249

housing is irrclevant. As I have emphasized previously, this type
of staristical technique may lead us to assert erroneously that the
disease under study is associated with housing, but mistakes of
this natuve should be infrequent.

‘The ciii-square lest can. also he used in more complex cou-
tingency tables. Theve are also some altcrnative tests which can
he usedt in ypecial contingency tables. The other tests are Neces-
sary because il the numbers in the cells of a two-by-two tablef
are very small there are some objections to the use of the gli;
square uest, \ \

N

AN
S D

Class vs, Measurement

The commonest data of this type involve meag;uﬁc’hmnts made
on individuals in various classes. In agriculture, for example, we
may he intercsted in the yield (say in bus};g{&@er acre) of threc
different varicties of wheat. Ordinarily~:tl1’é varieties would be
planted on a number of small ploissay ten plots for each
varicty, so that the experimental.fé’sults would consist of thirty
numbers. We w{:;uld“’\‘t-’é‘h‘éb{‘&tﬁiﬁzww wtgiher the variety was
relevant to the yield. The gacib'r to be used for prediction would
be the variety, a dassiflc'\?ztion, and the factor to be predicted
would be the yield, "1{hc‘asurcment.

The reverse sithation, in which t
mMeasurementt g{'{d“ﬂle factor predicted is a classification, is lless
COMINLON andinf.hc techniques applicable here go by various
names. LHeStatistical literature generally refers to such te.ch~
niques s discriminant functions. In the Gelds of application
thtjl"slr S}e different nomenclatures. In medicine, for example, the
(oghhiques go under the title of diagnostic parameters. |

Now Jet us retarn to the problem of the three varieties of
wheat. When the average yiclds for cach of the varieties are
calculated, they will not be exactly the same. We would. not
want, however, to jump to the conclusion that the ‘true yields
of the three \-'ariei:ics are different hecause there is always a
possibility that our results are merely manifestations of ex-

he factor for prediction s a

perimental ervor.
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As in the class vs. class exampie, we start by setting up 2 model
which postulates that vaviety is irrelevant insofar as vield is
concerned. We then apply analysis of variance to test s model,
The test itsell is called the F-zest (in honor of R. A. Fisher), If
this test is significant, we regard the varicty of the wheat as
relevant to the yield. As usual, we run a specilied risk of
erroneously concluding that variety is relevant, A

Measurement vs, Measurement KoY

A classic example of this situation is the study ofghe '11cights
of parents and the heights of their childrend™Khe connmon
method for presenting such data is a scattf{;diagram: In the
scatter diagram the average height of dig parents ir plotted
against the horizontal axis of a graph\#id the height of the
child is plotted against the vertical a:§is Each parent-child pair
15 represented by a point on thisgpaph. Since the points are
scattered over the graph, tht:,;n‘a'rr'le scatter diagram is quite
approprate. www_dbr‘au‘Ii:b.l'éry_org_in .

If the height of the pareRts is irrclevant insotfar as ihe height
of the child i1s conce;:ned; then it can be shown that a line
parallel to the hori?{ei}tal axis of the graph will fit the points as
well as any ()tl'ler\\urve. The statistical techniques for iesting
the relevance Of the height of the parents are regression or
correlation audiysis.

Re es"'“af’;:e and Relation
Th{.\’ statistical techniques for testing rclevance are designed
;qai?oid wild goose chases. If a factor, Z, turns out to be rclevant
{8 the quantity we wish to predict, ¥, then we procced to in-
vestigate the matter further, We would try to discover the
actual relationship between Z and Y. But we would not want
to go on to this next step until we had some evidence that Z was
relevant. If Z is irrelevant, the additional study would not be
likely to advance us toward our goal of predicting Y.
The tests for relevance may tell us that it may be worthwhile
to pursue our study of Z, but in order to use Z for actual predic-
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tion it will be necessary to find a workable relationship. This
relatioviship may be expressed verbally, but it is usually more
useful to try to describe the relationship in the symbolic lan-
guagce iie., as a mathematical relationship). In general, it is
not an casy matter to discover a workable relationship, and it
usuailv takes creative effort on the part of the investigator.

In the housing vs. discase example we might be satished \\-‘il,l{
the estimalion of the proportion discased in hoth housing sitda-
tions. This information might be used [or prediction afidhac-
tion. It might rell us, if the discase happened to be tl.{l)@}‘f,tll'osis,
where we should send the mobile Xeray units in ovdex to locate
cases of T.B. \\

When the vields of the different varieties b wheat are osti-
mated, this informarion may lead us to r(?c\CJIJ'llnend a particular
variety of wheat to the farmers in il ‘a}lj'accnt area. On the
othey hand, we may feel that the egp\é:riment was too small and
we might wane more information’ before taking action. If
relevance had been Qg;;%}pcfﬁ}é%ql;g};l% glrig_Ii;ﬁ then be xr-*orth while
to go ahead with more comprehensive éskpemnentauon.

The determination ol “the relationship between parental
height and child hci%hz\}\fould be the next step‘i‘n the measure-
ment vs. nu‘:asureri@nl’ example, We might see ifa Stt‘a:g}lt ling
(but not a horizomtal line) provided a good fit to the points en
the scatrer diﬁé‘[fz{lll. In this particular case, and in other scien-
tific work /e may not be interested n prediction per se; we
may hg\@i}é}estcd in learning more about the phenomena with-
out ch‘ihking in terms of immediate application.

™\ l\\-'Iultilz)le Factors

In most practical situations the problem is more complex
and involves not mercly a predictor and a quantity to be pre-
dicted but many diffcrent factors. The contingency table ap-
proach, analysis of variance, and regression analysis can be
extended to deal with these more complex situations. More
advanced techniques, multiple and partial ”fgr‘g‘mo”’ ;{nd
muitivariale analysis, and others, may be pressed into service.
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The consideration of soveral factors simultaneously may tell us
much more than the separate consideration ot cach lactor.

As an cxample of simulianeous consideration of fictors, we
might consider the work on intelligence quotients (1421, The
early work on the porformance of Negroes and whites on IQ
tests gave ammunition to the racists because of the pooy showing
of the Negroes. Many other factors besides race enterthe
picture, however. For example, there is a velationship 1 |'v=Lufeen
1Q and ecconomic status, Since Negroes have a Jowe r\.a\uaoe
economic status it would seem, at first glan(_.(. q uite «;10 e lesy To
try to disentangle racial and economic factors, Sowic progress
in this divection can be made through the use b prviici regres-
sion, however, and the results of this furth(,r stud» were highly
disappointing to the racists. Y,

The first studies indicated that, Ifs(ﬂ., race of an individual
were known, we could do a betfedjob of predicting his 1Q
than if we did not have the ini,’orﬁiuion about race. \what the
turther studics shoggd db%u’ihﬁlar% HE. iknew the race and the
economic status of the md)udual our prediction would not
be materially better tham if we knew only the cconomic stars.
According to the 1‘2}«;&8} modcl our prediciions should be much
improved by inchiding information about skin color, so the
results are hardly in accord with the racist model.

There argndny “facts” which are widely accepted but w hich
turn out t'g}\be fiction when investigated statistically. Staristical
tcdmm}\ws furnish protection against prejudices and super-
stltlohs, and a wider understanding of the principles of Statis-
t1c~:11 Decision might lessen the influence that biascs currently

\éxett on choice of action.

Relationships Involving Time

There are various specialized relationships which have cor-
responding specialized statistical techniques. Time, lor example,
Is olten an importiant factor in the prediction of phenomena,
and techniques appropriate to dynamic situations have been
developed. Under the broad heading time series therc arc many
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methodologies, In the past, numerous attempts have been made
to anaiyze time scries into components such as trends, seasonal
variations, cyclic variations, and so on. In cnginecring applica-
tions this type of apalysis of time scries has been an effective
instrienent, hut the a.l'}plic.ation of similar techniques to eco-
nomic problems has led to improved forecasting only in isolated
cases. Such devices as correlograms and periodograms have had
some suceess, but this particular statistical pathway has to\de
posted swith a sign: “Danger, proceed at your own risk.” O\

Another type of problem in which time plays a nlz}jQ:r\role is
in the prediction of population growth. The partiqaiar popula-
tion siudied may be a human onc, ot it may heZan animal or
micro-crganism population. There is an cxlefsive literature on
growtis curves. RN

In industrial situations, time enters thel roblem of control of
manulacturing processes. Control c}aﬁ{fﬂs and qualily control are
statistical techniques which have, been developed to meet in-

dustrial needs, but g}mg@g@g@,@gg@?&%&lgdb to other fields.

~ *

Other Techniques .

It should be 1‘ea]igg]§that I cannot give a complete Jisting of
statistical technigiesiin a short chapter. There are many r:ech-
niques which hay’s been developed to meet rather special situa-
tions in the kafous fields of application. For example, bioassay
is in'lporgaﬁ%_"in medical experimentation, and factor analysis
has be-‘.’xi.us‘cd mainly in psychology. ‘Therc are so many tech-
nigyésnowadays that they crowd the three-year graduate course
...iﬂ"gt’:;tisti(;s which leads to the Ph.D. degree. This does not
\ean, howcver, that there are statistical techniques which ap‘p]y
to all, or even most, decision problems. For many practical
problems the statistical methodologies are rudimentary ot nofi-
existent, and it is necessary to develop new methods for dealing
with these decision problems. The job of developing statisti_cal
methodologics to fit practical problems is part of the function
of a statistical consultant. 1t keeps him on his toes and makes

his life interesting,
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Summary
This chapter has cssayed a quick survey of the more im-
portant statistical techniques. Mention is made of the position
these methodologies occupy in Statistical Decision. It is empha-
sized that, although there is an extensive body of teclinigues,
the field is rapidly growing, and in many praciical degision
problems new tools will have to be [orged to meet ihe ﬁtrcds.
K

~

N
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DESIGN FOR DECISION

oA
N\
Speculations AL
< 3

Throughout this book I have been critical of afpachair think-
ing, of people who sit back and produce bcautiﬁﬁ‘thoughts with
little or no data behind their cerebratignss'In this, the last
chapter, 1 intend to do just this sort of, geculating. My excuse
for this inconsistency? Well for one(Bing, although I oy to
be consistent in my professional’ .réniarks, it's a terrthle strain
on a linman being tg be &Q}.},Si ieli}}r_‘ ﬂ'%ﬁ?is'r Furthermore, it has
been hard work writing sOHE ~p0rt¥0'ns af this book, and T am
giving wysell a little vacation in this chapter.

Sume readers, I'm i.c,lffe, have felt that the Decision-Maker is
a cold-hearted—ev &grim-—medmd of making decisions. These
readers might heywilling to admit that a machine may be all
right for mdkite the scicntific decistons which 1 have largely
Cmpl-xaaimd\iﬁ the text, or even for commercial decisions, hut
they ITEX\f}éél that Statistical Decision has no place in their own
world) }hat it is meaningless insofar as persona], gm-'ernmel'ital,
Or’{hferllational decisions are concerned.

\ 3T disagree with this view point. I think that Statistical D.c-
cision can play a uselul role in a wider class of decisions and 1n
particular in those decisions which have a direct influence on all

of us.

I certainly de not consider Qiatistical Decision to br? a
panacea. It is one method among many methods of rcacl.ung
decisions. Tt is not necessarily the best method; therc_arff situa-
tions in which intuitive procedures Jead to more effective de-

255
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cisions than any existing Decision-Maker. T have tried tomen-
tion the limitations ol the techniques in the course of this
presentation. In this chapter I want to discuss the potentialitics
of Statistical Decision, and, in particular, thosc passibilitics
which might affcct the lives of ordinary citizens.

Personal Decisions A

Wihien T say that Statistical Decision can play a role m per-
sonal deasions 1 do not mean that everyone will h“{\e‘“o tirke
courses in higher mathematics belore he can d(udﬁ whother
or not to go o the movies. Very few cvervday deuslom world
have sufficiently wide dilterences in the (ou'%cquenu\ of the
possible actions to make it worth while to (xpi‘nd the thine and
EIergy necessary to consiruct a forlllal.@egl.91()r1 Maker, TTow-
ever, I do think that the principles whiklVunderlie the Decision-
Maker can also be used, informallw Ny arrive at ellective choices
of actions to be taken in cveryday situations. In fact, I think that
most people with Lommaibrmmm -drgvorgliready used many of the
principles in making theiltdecisions. All that the statisticians
have done is to borrowd{these notions and dress them up in the
symbolic language. | o

You may have *@h that such concepts as mathematical ex-
pectation were, fidw and unlamiliar. TTowever, if you sorutinize
the concepty Argelt closely you will find antecedents in everyday
expellenc\e\ln the symbolic notation, mathematical expecta-
tion mawtook esoteric, but I'm sure that you can recall occasions
whef}\mu have had to make decisions on the basis of expeacta-
tlohs when you have had to combine probabilities and desira-

\bihtles (though vou probably did not use these names or make
the combination in the same manner as a mathematical ex-
pectation) .

Laplace once described probability as “common sense TcC-
duced to calculation™ and T think this applies equally well to the
whole of Statistical Decision.

In the process ol reducing common scnse to calcunlation, we
are doing a job of translation., The mcre aftempt to make a
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ranslation into the symbolic language may be very uscful.
Even if the translation is only partially completed it may serve
to bring into focus—or even resolve—problems which are
almost insurmountable in the verbal language.

A large proportion of the controversics in science, and in
everyday file, turn out to be basically verbal problems, and a
symbolic translation following the pragmatic principle is often
a good way o clear away the verbal underbrush and expose thel
path to decision. In this way we can avoid distracting verial
will-o™-the-wisps and concentrate on the esscntials of th?\pﬁ)b-
iem, the probabilitics and desirabilities. I have fourgd}}lie con-
cepts of Statistical Decision useful in this respect 1{1 ghé course
ol my consultations. You might try them.

As an example of a concept of Statistical Deeision which de-
scrves wider use jn everyday decision, coridicter the notion that
decision should be based on data. Alltl}e evidence that 1 have
cver seen indicates that schemes ,.f'or‘ decision which are not
based on experience %};E\T}QET?EQ%Q"?‘ T.he‘ aqrologers, palr.nists,
and others make a nice Livin g%\* per the priblic is not acq uainted
with the concept that daia constitute the {uel for decision,

Far move dangcrous»tgan the phony prophets are the smooth-
talking propagand! gy and pul}lic relations experts who hat.-‘c
developed effectide techniques for imfluencing our CConOMIC,
political, and\S0cial decisions. These supersalesmen are well
aware of tf'u;‘\:in';-l.deq_uacies of the decision—m?{king eq uipmcnt.of
the g(-\_r}y\f};ﬁ“pubiic and cxploit these dehiciencies to Lh(.:* .11111:.
Fora }?r\l‘ce these propagandist.s will pcddle worthless 111edlrc;mes,
papéisun politics, group hatred, or any other product. These
ﬁﬁnﬁcrupulous experts will successfully sx\r{ndle the publlc as

ong as the Decision-Makers of many citizens are fueled by
prejudices and emotions rather than by data. .

I am oprimistic enough to {hink that a reaction to.the intru-
sions of the supersalesmen is setting 1. Hm-\"(:\-'er, t.‘lns rcacnlon
has taken the form of complcte disbeliel in all.mffjrn'latlo‘n
which comes through the media of rnass communication. Thls
is not, in my opinion, a Lappy solution to the problem. If we
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are to grow intellectually we must absorb inlormation, and T do
not feel it is wise to set up a mental block and refusc to helieve
anything.

What we need is a filter, not a plug.

We must develop in ourselves, and in our children, the
capacity to sort out the incoming information, to determine
what is incomplete, unreliable, biased, or irrelevant. Thaade-
velopment of a critical mind is not a simple process, huetthe
principles of Statistical Dccision are helpful in this ngrﬁq;:\.ction.

N

Administrative Decision < N\

I earn my bread and butter by worl\mj‘\ the statistical
phases of medical research., As a resuliplany description of
Statistical Decision has tended to emphasize the rescarch ap-
plications at the expense ol the ad{ﬁinistrati\'e applications.
Howcver, there is a fertile field fanthe concepts of Statistical
Decision in the broad arca of admmlstmtne decision.

An admmlstrafqy“;g‘rdg;(ﬁg%}pygpgqg many skills, hut the
making of decisions is sure’h one important part of nis job.
Most administrators faec problems of planning, and the con-
cepts which I have bcbn discussing seem to me to be basic in-
tellectnal tools ﬂxﬁ\planmng. The notion of probability, for
example, provides a balance between planning in terms of cer-
tainties (whicl’ lacks flexibility or adaptabﬂlh,) and planning
on the bas‘bs of day-to-day expediency (which is so amorphous
that 1&110111(1 hardly be called planning). The idea of Sequen-
tial Decision is also of prime importance in practical pl’ir-mng

. \‘Manv administrative problems associated with planning. it is

\ brae, necessitate prediction in situations in which relevant in-
formation is scarce or nonexistent. It 1s my impression, however,
that the lack of data often arises because little advantage is taken
of the data-collection processes which go on routinely in most
organizations. With the expenditure of some ingenuity and a
little additional money, it is often possible to utilize this
routinely collected information.

In hospital administration, to take just one situation, the
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day-to-day running of a hospital requires a tremendous number
of records-—case histories, accounting records, and so forth.
Often (his information is cither thrown away or, what is much
the sanic thing, stored in ways which make the recovery of in-
formation a difficult, expensive, and time-consuming process. A
hospital administrator who 1s faced with an immediate deeision
may feel that he does not have the relevant data which he needs,
even though somewhere in the stacks of files in the basemcnt
there may be a ton of relevant files. An appreciation of tlfe
principles which I discussed earlier would impel an adnfiyistra-
tor to take more advantage ol his informational TespuiCes $0 as
to avoid the necessity for blind decision. D

While the administrator will not ordinarily'“l;} called upon
to build lvs own Decision-Makers (such as the sampling in-
spection schemes), he may have supewi‘s@fﬁ respomibi]ity for
the rechnicians who will build the })eﬁi&on—l\-fakﬁrs or the per-
sonnel who will operate them. FI;hé administrator will reqlll:“i
at lea.s.L enough famW&F&'bi%i,}ﬂiﬁ-l%‘?ybgﬁ?‘;’hP’"‘”“P‘ef’ to Tcaluc
that if the Decision-Maker lg'of)ased 5n Fandom samples it may
break down if the op(rrgpiﬁg’p(rrsonne] selects the samples in a
haphazard manner. s\ ) )

Although the op’sfat’ing Decision-Maker requires only routine
supervision, the{administrator should know that a changm%
situarion na '*;“’e’ciuire modification, or even S(':rapp.ing, ot the
Decision- Maker. If a sampling inspection plan which returns
bad shi faents to the supplier is sct up, the scheme may operate
smoothly for some time. But if there is a change in t'hc manage:
,¥Pm:1”2')r' policy of the suppliet, then the qpa}ity of shllpments
may hecome so poor that it is 10 longer cfficient to reject the
Bad lots because of the interruption in plant schedules.

In this event the only appropriate action may be 2 chan.gc. of
supplier, and the executive may be warned of this by combining
the inspection plan with a control char!. Such a procedure
would allow the Decision-Maker to make the Tecommer?dat19115
for action in usual situations, but when an unll!Sl_lal sltulat.,um
occurred, the machine would turn the task of making decisions
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back to the administrator {who has a widcr range of possible
actions than the machinc).

When Statistical Decision is used for high-level excentive
decistons, the adroinistrator may bhe called upon to plav a more
active role in the fabrication of the Decision-Maker. The
technicians may not be capable of devising a realistic maodel for
the Value Systern, and this responsibility may devolve onto .r{le
admimistraior. Alter all, the balancing of values is a fihida-
mental part ol the executive’s task, and this will remgiadyirue
even if a systematic procedure is substituted ol dntuitive
judgment. N

The executive, and possibly only the (.?X(‘.(_‘.Ll,&ikk‘., is in u posi-
tion from which he can sce the operationgbl his organization
as an entity. Not only does the administrator see the relation-
ship between the various sections upgf&r his jurisdiction. but
he also secs the [uncuioning of the éabive organization over time.
Consequently, the administratgn ﬁléy be the only individual
with the broad PCT%RS%F%‘E%&.‘Eiﬂié.}:’a.lg%syste“‘ M
necessary to construct a realistic model. Moreover, within the
limits of the policies lixed by his superiors, the executive tends
to set the Value Systet”* (L.c., the appropriate Value System is
the cxecutive's) . Id\this circumstance the administrator has to
play an importagis role in the formulation of the Value System.
He mav do t,hiﬁ‘a{ a verbal level and let the technicians take over
from therep™

A le { problems are so complex that the administrater may
be gli)’&tly concerned with the details of the Value System. If
th¢administrator is a sanitary engineer in charge of a pollution-
\”?,X)htrol program, he may have to try to measure how much it
1s worth to the residents of an arvea 1o be rid of the offensive
sights and smells of a badly polluted stream. A suitable value
scale may enable the engincer to set up his control program in
such a way that the taxpayers will fcel they are getting their
money’s worth.

Similarly, a health ollicer may have to tackle the diflicult ques-
tion of the desirability of good health in order to determine
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which of scveral possible disease-control programs might be
initiated in his district. This example is one of a broad class of
adminisirative problems which comes under the heading of
“optimum allocation of resources.” An extensive research pro-
gram is currcntly underway on this problem, but most of this
work is slanted toward military applications {since the armed
services are financing it) . Becausc of military secrecy it is not,
possible to say how far we have come toward an answer to :the
problem of allocating resources. (\)

In any case it will probably be some ycars hefore D’e}}isién-
Makers appropriate for these high-level adminjatriph-*e de-
cisions will be available for civilian applicatio s> The main
utility of Statistical Decision in administragiye_problems will
lie in tlie principles rather than in the tcc’hi\ig,al parts.

7

. R
Group Decsion 8

In the interdependent society of today we recognize that the
decisions ol one i11d¢,;;j@;g¢rmlglga£fe?grgF},ﬁer indj\-'iduals. ‘II} 2
democracy the individuals affected by a governmental decision
have somic opportunityqe participate in the making of that
decision. When a number of individuals pust make decisions
which will in wm_g'zx\a“new prol}lcm arises. Thls projb?em h:as
been partially explored for the case of competitive decm}ons {in
which the indi¥iduals are out for themselves) and a ht.tle has
heen douﬁ'\"g)f" the case of cooperative decision {in which the
indi\-'i.dﬁ\i}s’ try to reach a singlc decision for the whole group}.
Reseayth on this problem is called the theory of gumes or the
HEory of organization. -

\\:}"n )myf (}})?Tli(’)n’ one of the great potellti.alities of Stamstu:".al
Decision is that it can provide a mechamsml for cooperatie
decision; that is, it may enable a group of infillvlduals to reach,
indepcadently or by interaction, 2 singlc_decmorf acceptaﬁln_e to
the individuals, In many practica] situatlo.ns'. a sl'ngle {16(.15-1{"{1'1)
or (as } will herealter call ity & group dectsion, 18 prerequistie
to effective action by the group.

ot - 1 ve
In the scicentilic world the standard statistical techniques ha
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been an effective mechanism for group decision in the problem
of inference. Ten different scientists {with various predisposi-
tions and bheliefs) can independently apply the standard analyti-
cal procedures to a given body ol data and come out with ¢s-
sentially the same inlerences. Without generally accepted and
objcctive rules lor inference this same group of ten scientists
might reason intuitively from the same data and come out gwith
ten divergent inferences.

The success of statistical techniques in the summﬂ“ Jwvorld
does not miean that there will be a corresponding mcm s outside
of this realm. It should be remembered that hdme the mtro-
duction ol statistical techniques the scientistsérignaged 1o work
out procedures for mference which gave faiﬂ\:-' good agreement,
Moreover, the scientists were e’ookemr r({r\bh}u rive wiethods of
imterence, and this was onc of the 111\11? reasons why statistical
techniques appealed to scientists ané were so readily accepred,
Outside ol the scientific world thigre is a strong resistance to any
attempts to deal X\ri&l\}\%)_ﬂﬁhggiﬁiﬁy aigabjcctive manner, Many
people do not want (andavould not accept) a rule fov in-
ference which migitt J’(';ic" [ them (o draw conclusions which
wolld be in opp()gsi\i'on to cherislicd personal beltefs and
prejudices. X\

Although I afificipate no stampede 1o use Statistical Decision
as a mechahi®m for group decision outside of the world ol
science 'ma\l)mslbh business (where prejudices may interlere
with prefity, I think that this aspect ol the Decision-Maker
desgiwes serious consideration. In our civilization we have been
Ma@,opung from crisis to crisis because there is no adeguate

\mechanism for group decision when the “individuals” are na-
tions. The same conllicts arise, on a smaller scale, within the
nation when the “individnals” who must make group decisions
are large organizations such as corporations and labor unions.

Even though the worth of Statistical Decision is unproved in
conmection with group docisions outside the scientilic world, it

and the nced for an cflective

mechanism is desperate. Very {ew mechanisms for uncoerced

represents a possible mechanism
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group decision have been invented (aithongh there are many
mechanisms for forced group decision).

I kneww only two major devices for uncocrced group decision
—voting procedures (such as majority rule) and verbal bar-
gaining. A third device, turning the decision over to impartial
experts acceptable to the varlous individuals in the group,
might also be considered a mechanism for group decision.

The ballot box works well when decisions are relatively nod,
techinical and when the group loyalty is sirong enough so .\t}\at
minority voters are willing to stay with the group and acgept the
majority decision. When the decision is complex.and con-
fused, the action of the voters tends to be based, oRMirrelevant
issues rather than upon the data relevant t.o.'thf\ decision at
hand. A Deciston-Maker which is not fucled\by relevant data
cannoi be expected to produce decisiam;s;}\ﬁlli(:l'l will lead to
desirable conscquences, \ )

This point has becn rccognizec’l:ahd in America a mu]tlst.age
system is used whercin the eleetdrate chooses Tepresentatyves
to make the gm-'el'llg?ggtgffalgé}"sri‘?f LOPEHB clected representa-
tives, Congrass, prcsumab]y‘hz{x.rc the training and talent to c?c:al
with morc complex %ss}:fes, but even here t.he Tepresentatives
tend te vote on pdlieles and leave the technical decisien ques-
tions to the adimghjstrators. _

The methaddt verbal bargaining may, of course, operate 11
conjnnction\:w'ith the voting procedures {as 10l congressional
debate)s Picsumably the relevant data for decision 1s introducr_fd
In \*‘@ri;}l form and the rules for ipference arc those of logic.
Verbal discussion Tepresents a powerlul mechanism for group
‘ limitations. Many of these
age. It 1s possible
ver words and

&‘

\al‘;(fisitm, but it is subject to serious
{nitations arise from the weaknesses of lang
t tie a verbal discussion into knots by haggling ©
deficiencies of language arc often
nt; cven when there
1 a group decision,

the meanings of words. The
exploited deliberatcly to prevent agreeme
is a concerted effort by all parties to reacl
these verbal snags often frustrate the attempt.

At the intcrr;ar.ional tevel the verbal mechanism seems to
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have broken down almost completely. This also occurs very
frequently at fower levels of organization.

Let me emphasize again that [ am not trying to seil Statistical
‘Decision as a panacca for the problem of group decision. It
has possibilitics and it deserves a trial. Statistical Decision may
be uscful m breaking down a complex problom into a vmnnber
of smaller problems concerning the Prediction and Vahue Sys-
tems. It may be casicr to reach agreement on these smalleg Prob-
lems. In many situations there will be no model and ligheydata
available so thatr any attempt to substitute the 5}-',7111.'.)\011(': tan-
guage for words would be a fraud. At its presq}'it"ﬁ;;rgc of de-
velopment Statistical Decision is only a stratﬁyﬁ\t’)'ut in view of
the critical situation with respect to group dedision we have to
clutch at straws. O

2\

George \®

Whether or not stadistical ;}c&i‘ﬁon will e an eflective
mechanism for personal. cfri:.c}%]ﬂrﬂiﬂ’ﬁ té)}igmqr group decisions s a
matter for speculation. BL}t};ﬁTlce have come this far, let me
go farther and try to Iquak into the lar [uture, to Jook ahead a
few centuries rather %h’fm a few years, It is 2450 a.p.,, and at last
a research team }Qs"designed, built, and dchugged a supor
Decision-Maker athich has been aftectionately called George.

George llasiil"br(_)(ligious memeory. In his acres of memory
tanks he starcs most of the recorded past experience of the
human\{:é;éé‘. His complex electronic and post-electronic circuits
repllegé}lt a translation into glass and metal of the principles
01§~Sté1'tisti(:al Decision (much advanced and improved) . GGeorge
"Iy psychologist as well; he can determine the value systems of
\his customers. In a blink of an eye, George can characterize the
decision problems of these customers, calculate the probabilities
and desirabilities, balance these quantitics in a manner appro-
priate to the value systems of his customers, and arrive at a
recommended course of action,

Whatever your problem, George can help. Is your dilliculty
technical? George is an expert on everything. Do you have a



DESIGN FOR DECISION 263

difficuic and important personal decision? George will have
your best interests at lieart and will have a vast {fund of passion-
less expericnce to draw upon. Is there a dispute which vyou
and vour adversary cannot settle? George is a truly impartial
arbiter and very clever at [inding a solution satislactory to all
partics concerncd. Is it a matter of state? George knows history,
politics, and economics—and he is a military expert as well.
George is a wise and trusted [riend who will do his best [ox
everyone, George s an incorruptible philosopher—kingoa}ﬂ
Delphic oracle ali rolled into one. George has no p]jej:u\dic'cs
(apart Jrom thosce which have been built into his gi:f‘cil,its). In
short, George is something of a paragon of virtuéghe has hu-
man, ¢ven superhuman, abilitics without theé_eorresponding
human weakiesses. A
George is uite popular. Many peopngagerly turn to GGeorge
for advice, Greorge hetrays no confidgntes; MOTEOVET, he is never
scornlul or critical. Since he usgs Yhe customer’s own value
system. (GGeorge 18 111%@@3@@5@%@19& th%n a huma.n advisor
could be. What is more, his féelings willgnot be hurt if the cus-
tomer docs not take Geurgé;s advice. George does not try io
lorce anvone to followany recommended course of actior.l.
Yet curlounsly endush. George has what amounts to an de.a]
way of cnforcing Tris decisions. "The custormer can take. a (.lll:-
ferent course dtaction, but he must do this with the reahzathn
that this d{f;l vent action is likely to turn out 0 his own d%s-
ad\-':mtaixi.” 1t the customer disregards George’s advice, he will
have ~ﬁ;)_ one but himself to blame if things turn out badly. _It
liiilfiétkc vemarkable personal confidence, even courage, to dis-
Sagice with Gieorge. Most people will end up by doing what
George savs. ,
And this is why George poses a serious problem. Georges
e"olutionary cousins (the steam engine, the mechanical ldm:h
digger, the punched-card computers, the servo—mccha.msms?
have sometimes produced technological unemployment 1 "ar:'
ous occupational groups in the human population. ]t: as 1 hax’e
maintained, man is a decision-making animal and this 15 man 5
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main claim to distinction, then George (who can make better
decisions than any man) threcatens to produce technological
uncmployment on a grand scale. Quite painlessly no doubt
(which makes matters worse) , George can produce technologi-
cal unemployment of the whole race ol man.
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FURTIIER READING

Those of you who would like to know more about the var{ous
topics ol Statistical Decision will have to come to (C,"I'ips"\"\i:ﬂl the
technical side of the subject (which [ bave avoided),” As of
April, 1053 there is only one book, by A. Wald, avhich deals
specilicallv with the topic of Statistical Decisiény However, at
least tivo acdditional books, one by 1). Black'w:’ll 4nd M. Girshick
and the other by L. . Savage, are schqd.g’leﬁ {or pablication in
the near future. P \%

Wald's pioncer book, Sta.tistical,f)éﬁsion Functions,! * has al-
ready achieved the sl,@;t,\].l“s_gﬁlgﬁ}gﬁﬁ%ﬁ&tii}%ﬂfOTmnaide unicss
you are a good mathematician, you will not get past the first
paragraph. Shortly after Professor Wald completed his book he
was killed i an aircr;ﬂ%t,&ccide]lt in India. Conscquently, pr.og-
ress in the dc\-'clr_uﬁ@}éht ol Statistical Decision has been 1m-
measurably slon@d Wald’s book contains a bibliography of
nlaLll(?Tl'li-ir.i'C:-l]:‘i}alﬁcrs relating to Statistical Decision  {up lo
19503 . A C{Jﬁ\[}!(rte list of Wald's publications may be fourlld.m
the me \{n'ial issue of The Annals of Mathematical Statistics,
Margfi, M 052, _
. @&lthough the number of books devoted specifically to Statis:

%if’.:ﬂ Decision is very limited, there are a great many bocks that
deal with the variox;ls statistical topics that I have disal?setl In
fact, there are so many that a newcomer to the field is likely to
be confuscd by the variety of oflerings. Thcr.efore I feel.lt
worthwhile to single out a few of the books whu.‘,h in n"{}’ opin-
ion ave especially suitable for those who may wish to go more

deeply into the subject.

. . ; . topic, pages 269-272.
* See correspondingly pumhercd reference listed by toplc, Pag

267
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One approach to the subject is through the key concept of
probability. For a very readable, though someshat dated, ac-
count of the logic of probability I would recommend Lord
Keynes’ treatise.* The treatisc takes the “degree of belel” point
of view, so for balance you might read R. von Mises'® Famous
presentation of the “ohjective” position. In my opinion the
work ol the late Hans Reichenbach * comes closcst to provigiog
a sound philosophical foundation for the theory ol pr Gha,bl iy,
‘The mathematical side of probability theory is treargd Pn Wil-
liam Feller  whose book virtually renders obsolete al‘} previous
texts, "G

If you would like to know more about the ‘rht\(’rr) and practice
ol “classical” statistics, the appropriate refarence will depend
upon your mathematical and practicakobackground. For the
complete novice, the first few chapteks™of Groxton and Cow-
den ® or Yule and Kendall 7 p*ro‘,-'ic‘lex a fairly good introduc-
tion. For those ol you who haveshad some practical experience
with statistical prohlr@m'sdHaa@ﬁlﬂhm:gcm*rgﬁﬁwn1;1r.ica] background
is somewhat hazy, the bestbook is still G. Snedecor’s Staiistical
Methods.* This book ks been the research worker’s hibte for
many vears, On the™ Wther hand if your mathcmatics runs
through calculus, then TToel ** and Mood * are good introduc-
tions. If you arg ,,lookmo for a rcally comprehensive treatment
at the calcufuglevel (and can afford the price}, then M. G.
Kendall’ s\l'Bok *is the best on the marker. Those readers who
like theéir“mathematics straight (including some poing set the-
OTY o w1]l find H. Cramer’s excellent text® both clegant and
M \og\ent

. Most of the current statistical methodology can be traced to
the work of Sir Ronald A. Fisher. Much of this work is pre-
sentcd, but not demonstrated, in TFisher's classic, Statistical
Methods for Research Workers® The text is hard reading be-
cause it is incredibly concentrated. However Fisher's other
book, Design of Experiments,” is rclatively casy reading in
the first few chapters (although it becomes more technical
thereafter) . Fisher’s initial discussion of the principles of scien-



FURTHER RFADING 969

tific experimentation in The Design of Experiments ™ is, to
my notion, the best of its kind.

Another statistical pioneer, Jerzy Neyman, has written an ele-
mentary lext ¥ which discusses the basic concepts in statistics.
Neyman carly emphasized the concept of inductive behavior,
which is the precursor of Statistical Decision.

In addirion to the books which deal with statistical methods
generallv, there has vecently been a large number of texts deg
voted 1o specialized methodologies. 1 shall not try to remark vh
these ooks individually, Rather I have listed one or tw0)texts
in each category. T have used the following numbers, to give

some idea of the nature of cach book: \\

(1) Discussion of principles (%

(2) Presentation of methodologies

{8y Derivation of methoddl gies

(1) Derivation of undeglying theory

(5) Related topicsad®

W“’W-dbl'é}U}:!BT‘al'y_org_in

and the [ollowing symbols pavgive some idea
cal level:

of the mathemati-

/N

./ Arithmetic
.\ \Al Algebra
s " Ca Calculus
" PG Post-caleuhus
A\ NM Non-mathematical
§ SL  Symbolic logic
&?%f'mf Decision:
\1f Wald, A., Statistical Decision Functions,
Inc., New York, 1950. (PG 1)

Jobn Wiley & Sons,

Probability:
2. Feller, W., An Introduction to Prob ot
cations, John Wiley & Sons, Inc., New York, 1950. \(; a l\)
3. ¥ry, 1. C., Probability and fis Engineering Use.s,‘ D. Van INOs-
trand Company, Inc, New York, 1928 (Al 1,3)

ability Theory and Its Appli-
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4. Keynes, J. M., A Treatise on Probability, The Macmillan Com-
pany, Lid., London, 149249,  (NM 1)

5, Reichenbach, FH., The Theory of Probability, Univevsity of Cali-
fornia Press, Berkeley, 1949, (SL 1)

6. vou Mises, R, L., Probalility, Statistics, and Truth, The Mac
millan Company, New York, 1939, (INM 1)

General Texts: O\
7. Cramet, I1., Mathematical Methods of Statistics, Princetan ¥ni-
versity Press, Princeton, 1951, {(PC 4) N,
8, Croxton, T., and Cowden, D., dpplicd General S.'(IH\J:{\ Pren-
tice-ITall, Inc., New York, 1959, (Ar 2) ("’«

9. Fisher, R., Statistical Methods for Ré’\ﬁ’ﬂ?(}i' {Tm hevs , Tenth
Edition, Oliver and Boyd, London, 19463 ) AL 2)

10. Hoel, P, introduction to Mathematical M@istics, Johu 3Wiley &
Sons, Inc., Now York, 1947, (Ca 0N

11. Kendall, M., The Advanced T fwm; bf*‘f!ru’hf!rc Third Ldition,
Vols. 1 dnd I1, ITatner Pubhahmg Compdnv New York, [951.
(Ca 2,3) R

12, Mood, A., Introdwaetabbr ami‘émr?brgﬂp af Statisties, deGraw-
Hill B ook Company, l:f't:(*.'., New York, 1930, (Ca 3}

13. Nevman, ., First Cgluse in Probability and Statistics. Henry
Holt & Compdniy‘\\'uv York, 195). {Ca 1.3}

14. Snedecor, G., N(z»{;stacal Methods, Fourth Lditon, fowa State
College Press, Ames, 1916, {Ar 2)

16. Yule, G.sand Kendall, M., dn Introduction to the Theory of
Stfafig«t{c&j Fourieenth Edition, Hafner Publishing Company,
Nei&\ﬁ‘_'ork, 1950.  (Ar 2)

Samg’{gi}g:
0"36.\;’(201‘111“&11, W., Sempling Tef‘r":r.r,iques, Jobn Wiley & Scns, Inc,
) New York, 1938, (Al 2,3) _
17. Payne, S., The Avt of A.skmg Questions, Princeton University
Press, Princeton, 1921, (NM 5)
18. Yates, V., Sampling Methods for Gensuses and Surveys, 1Jainer
Publishing Company, New York, 1949,  (Ar 1,2

Design of Experiments:

19. Cochran, W., and Cox, G., Experimental Designs, John wiley &
Sons, Inc., New York, 1950, (Al 2)
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90, Fisher, R., The Design of Experiments, Sixth Editien, Hafner
Publishing Company, New York, 1951, (Al 1.2)

91. Kempthorne, O., The Design and Analysis of Experiments, Jehn
Wiley & Sons, Inc., New York, 1952, (Ca 8}

Special A pplications:

99, Hill, A. B., Principles of Medical Statistics, Fifth Edition, Oxford
University Press, New York, 1952, (Ar 1,2) p

23, Madher, K., Statistical Analysis in Biology, Second Edition, Inter?
scicnce Publishers, Inc., New York, 1946. (Al 2,3) )

94 Mainland, D., Elementary Medical Statistics, W. B. ,§ﬁl}nders
Company, Philadelphia, 1952.  (Ar 1,2} " N

95, Rao, C. R., Addvanced Staiistical Methods in Bio‘n%ﬁ‘ic Research,
Jolin Wiley & Sons, Inc., New York, 1052..3Ca'8) .

26. Tippett, L, Technological Appiicati(ms qf{ta.tistics, John Wiley
& Sons, Inc., New York, 1950.  (Ar 2D

97, Youden, W., Statistical Methods o€ Chemists, Jobn Wiley &
Soms, Ing., New York, 1951, ’(;\i“i!)

Histovical La nofm.a.f‘a"’..s:www-dbT:E:IfL[‘{l brary org.in

28. Fisher, R., Contributionsg {0 Mathematical Statistics, Jobn Wiley
% Sons, Inc., New York, 1050.  (Ca 3.4) _

29. Pearson, K., Kar an}son’s Early Statistical Papers, Cambridge
University Phess, Cambridge, 1948. (Ca 34

30. Pearson, E,\afld Wishart, [ wSudent's” Collected Papers,
Cambriflge University Press, Cambridge, 1942. (G2 3)

81, Wald,/AY Sequential Analysis, Jobn Wiley & Sons, Inc., New

Yok, 1947, (PC 3)

Rélgted Topics:

82 Arrow, K., Social Choice and Individual Values,
Soms, Inc., New York, 1951, (PC 5)

33. Dewey, J., The Quest for Certainty, G. P-
YVork, 1939, (NM 1

34, McKinsey, J., I-n(t-roduc)tfon to the Theory of Games, McGraw-
Hill Bock Company, Inc., New York, 1952. (P_C 3)

35. Morse, P., and Kimball, G., Methods of Operations

John Wiley & Somns, Inc., New York, 1951. (Ca 5)

John wiley &

Putnam’s Sons, New

Research,



272 DESIGN FOR DECISTON

36, Shannon, C., Mathematical Theory of Comununication, Uni
versity of Iilinois Press, Urbana, 1949, {(PC 5

37. von Neumaun, J., and Mor genstevn, O., Theory of Gumes and
Economic Behavior, Second Ldmon Princeton U niversity
Press, Princeton, 1947, (PC -1y

38. Wiener, N., Cylernelics, John Wiley & Sons, Inc, New York,
1948, (N 1)

\g
wwwrd bra{\t{‘lswrary org.in
A\
o
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basis, 19 10.; 99, 102 ff.,

. 134,
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Administvation, 4, 188, 211, 258 ff,
Advanced system, 61, i3, 54,
dgriculture, 2. 75, 133 1l, 188, 208,

(RN

def., 74; mutnally ex-

Card games, 42,76, 77, llh\
Cause: def., 36. s' *
Chain: causal, defif 2’4 event. def.,
prolability, s m\nl deeision, 1‘30
144, daia, l{"O’ ‘many-link, 239,
Chemistr}',\q‘,.h, 18, lﬁ.a, 164, 208, 243,
246. N
Chi-sgliqre, 210, 218, 249,
Clastification, 150, 153 ff.,, 160, 198, 159;
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449, 251,

Alternative futures: del., 21, 23 {L Sepiluation of, 240, 241, 247, 249,
Analysis of variance, 245, 250 & ©Eoin Mipping 44, 45, 56, LA I, 186,
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ARISTOYLE, 15, 84, \ rzpo tents of variance, 243,
ARRCGW, K., 7. ’.;:' Compound probabitity: del., 70 73,
Are, 131, 152, 174, L 298.
Astrology, 33, 257. w\\ Conditional probability: def., 70; 72,
Aa‘h'ondmy, 33, 42, 163, 463/ 166, 160, 79, 104, 215, 223,

-0 \) Confidence intervafs, 2311
4r'malgx 125, 160, 2095206, 207 ., 219,  Consensus, 52, 90,

24G. (Scc ,11~u Ha’qrz)

BACON, K., 1'3!"\

Baseball 4(,\39.

BAYF \8

fayes, X r, a1 i[ 185, 157,
BEDQ:;UILLI ., 121,
ARERFOULLLL T, 42,
Higs, 147, 184, 188,

248, 252,

Bianssay. 253,
Biolugy, 2, 6 1L, 18, 36, 43, 100, 143, 207,

191, 192, 195, 242,

Y08, (See also Medicine.)
BRAIIE, T., 169,
Business, 2. 5. 36, 52, 91, 101, 111 [F,

15, 123,.12T{I,, 130, 134, 135, 137.
Calculaled risk, 102, 103; minimize the
maximum, 113
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Consistency: def., 75; 175,

Contingency table: del., 211; 248, 244,

Controf: def., 165; direct, 156; of ex-
perimenier, 157; statistical, 157 de-
grees of, £44.

Conirol chards, 235, 238,

Corvelaiion, 200,

Cost accounting, 2, 26, 01, 139,

Costs, 2800, 41, 102, 103, 103, 108,
111 if, 123 &., 130, 155, 139,

Criterin for decision, 29, 9%, 28, 10,
110, 112, 116,

Critical mind, 149

Critical region: def., 225; 226, 227,

234 ff., 256.
Cycles, 33, 208, 253,
naRwIN, ¢, 168, 165,
Lata, 145 11.; evaluation of, 146; classi-
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fication, 150: collection, 155; rccord-
ing, 157; incomplcte, 158; summariza-
tion, 159; -gathcrer, 169; for model,
178; evaluation of, 240,

Decision, 1 ff.; history, 6 [L; problem,
1%: routine, 111; executive, 127;
chain, 130, sequential, 132; terminal,
13 &.; enforcing, 139; vs. infercnce,
23G; personal, 256; administrative,
258 1f.; group, 261,

Decision-maker: def., 4; biological, 73
cultural, & ff.; intellectual, 13: vs. in-
fercnce-makers, 217,

Design, 143, 155 fi.; of experiments, 244,
245,

Desirability, 22, 85, 103 1f., 119,

Devils, 11, 28,

DEWEY, T., 20,

Diagnosis, 131, 154, 198, 249,

Dice, 42, 49 ., G2, 63, 08,

Direct system: def., b4; 55, 56, 60 L., 34,

Discrimingn! functions, 256, 249,

Economics, 2, 36. 38, 90 1L, 98, 169, 1‘88.;’”
\a\r_clbr‘qq‘ii:b.l'ér‘y‘_fgﬁ cion sampling: sce Industrial in-

207 ., 253, 262, i
EINSTEIN, A,, 167, 170. b
Engineering, 16, 27, 28, 152,162, 163,

178, 246, 260, 264, L
Error, cxperimental, 98, 80 M\margin of,

100: clinical, 158; types) of, 225 IL.
Fstimation, 233 (I, 2885251,
Expectation, maphematical: def, 108;

maximum, B$Mminimum, 108; 112,

113, 115, ]:1*6}119&,_. 125 €., 156, 256,
Experimept §AF, 17, 47, 60, 03, 93, 189,

143, W, M84, 217 ., 231, 233 (1., 257,

2400048 249, 233.

&

) .(aét'or analysis, 253,

~o

WNFELTER, w., 122

FISHER, R, A., 42, 83, 168, 224, 250,

Fareign policy, 5, 102, 263, 204,

Forfune-teflers, 37, 257,

Frequency distribution: def., 200; 201,
2485,

“Fruit-stand” effect, 184, 187,

cALILyo, 40, 169
Gambling, 12, 64, 116, 120, 122, 129,
Games, theory of, 2, 96, 261,

INDEX

GAUSS, K., 42,
GEORGE, 264 ff.
GRAUNT, J., 42,

UALLEY, E.. 42.

Haphazard sampling: def,, 1917 195,
196.

HARVEY, WM., 163,

Horse-racing, 3, 39, 46 (L., 52,

Hypothesis: sclentific, 174; &‘.e?,\, 215,
altcrnative, 214; nuil, def., 210, 220;
tests of, 217 Il - (See afse, Sgnijicance
test.) NS °

N

Independence: Q€51 72, 990,

Index numbepd (160, 216,

Indiﬂ'rzrencg“){%mr, b3,

Industry e fndusiris! inspection, 2,
4, Fh,%0. 1711, 12341, 129, 134, 137,
14483, 253, 235,

Inferehee, 212 & rules for, 215; stand-

M Naids for, 821: applications of, 230, vs.
N\ decision, 256G,

Intormation theory, 2, 52.

sHeetion.
Insufficieni reason, principic of, 40, 6t
Inverse probabilities, 81, 124 it., 145,
224,

KELVIN, Lorn (W, Thempson), 40
KEPLER, J., 168,
KiMBALL, 6., 133,

LAKDON, A, 168,

LAFLACF, p., 42, 83, 953,

Life insurance, 49, 43, 61.

Logic, 2, T4 ., 37, 195.

Loss-confrel: def., 106; 108, 112, 118,
224, 236.

Machines, punch-card, 15; vohot, 137;
158, 153 advanced. 205,

Manufacturing: see Industrial inspec-
fion.

Market value, 89 {f.

Mathematical expeclalion: del., 1“5_;
112, 118, 115, 116, 119 ., 125 f.. 136,
236. (See alsa Expectation, mathe
matical.)
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s, 42, 48, 63, 74, 96, 97,
171, 17%, 197, 198, 202,

Mathesaticion
120, 121, 1147,
207, 284,

Mean (). Z0240, 210, 228,

Measuremeni, 175 cef., 1552 179, 197 D.:
prototype. 189 marhematical model,
202; wennigie. 24¥; improvement of,
218 244, ¢

Medicine. 3, 1600, 100, 1810, 138,
193, 149 . i3, 163, 160, 180, L83,
186G, 108, 200 §F, 227 I[.. 232, 233, 236,
237, 240, 24i. 217 AL, 251, 238, 258 ft.,
260,

Metearalogy:

e T eather forecasting.
130
rations, 85, 08, 152, 155,

o=

A7, 261

WILL, T., 543

Minimeax, 115, 115,

Mistahe, 221.

Model: mathowadical, 63, 10] ff; sta-
tstical. {61 1781 physical, 1G2;
ahslracr, 5 verbal. 164 swinbolic,
164; -m [64; aldvanrages, 168
disadvaniuges, 171 rale of, 17411
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Optimism, 105, 106,
Or, role of, 67 1L
Ovganization, theory of, 261

Paradax, 118, 121, 172,

Pararneler; del, 176; normal distribu-
tion, 209, 204; use of, 234,

PASCAL, ., 42,

PAVILOV, L, A,

PEARSON, E., 83, £\
PEARSON, K., 42.

Pessimisie, 105, 106, 113, O\
Philosophy, 29, 38, 44, 85 11, S0IAE,

1
255. O
Physics, 164, 40, 162, J&Z 168, 170,
[72 ., 179, 208, 246\
Prilor trinl, 244, '\'\.‘
Planning, 258 ff N Y
Populaiion, 158 fel., 188; 183 super-,
183; hypodligtical, 186; 193, 194, 196,
200, 2:14\,_‘ 2, 228,
PragingtigSprinciple, 204, 148,
Predisio: see Repeatability.
Rieditting systewn: def., 28 scales, 3%

oocharaceeristics, 47, 48, 50 ff.. 85, 113,

dara Lov. 178 HL-Unpling“?"‘I%,db‘IEWJ’:’bT’QT&-OES‘%ill 210; eonsienetion,  240;

vanood,
[RIIT A
Lest of, @

[8= 210 mmsurcmqﬁrz‘.’.
stection. 218 for Losisea 22,
I: choice of, 252; vsdmotdel,

233 s cal, 245, +8 ) '
MORLENSTTRY, €., Uf, g
MORITY, ¥, 176, N\
MORSE, b, 185, .
MOSIFELIR, F., 93, W%/
Multiplication pyiel 70 (.; independ-

ence, 72 2986
Mufually :f’{{]»s:f:fz-‘e: def., H1; 78, 74, 79.
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wa’a;zkv_.‘f.. 167, 175,

HEMAN, A5,

ROGER, P, 98, U4,

Normal disteibuiion: del.. 202; illus.,
'203; uscs, 208; 210, 219, 228, 243,

Not, vole of, 67 1T, .

Objectivity, 128, 151 f.; relevane, 152,
153, 154 2052, . .

ooCans (William oly, 285,

gperaf{onml definition, 151, 153, 154,
Perations research, 133, 145,

model for, 247,

Prediction, 24, 53: persistence, 540 tra-
jectory, 43; evlic, 85 assowiative, 36;
autilogarithmic. 37 hindsight. 38
47, 172, 176, 177

Prefrrence, 05, 96; wrility, ng: 101, 198

Prior probability, 8l IF., 124 .. 155, 224

Prolabifify: cvent chain, 26; history ol,
41; interpretation of, 43: dice, Bl;
axioms of, 63; symbol, 66 manipola-
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and Addveced sysient)
protability raiio: def., 226, 250.
Fsvchology, 91, 95, 151 108, 208, 209,
203,
Public apinion:
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Purchasing: see Indusirial inspection,
Purpose, 20, 103.

Quality cantref, 75, 76, 253,

Random sampling: see Sampling,

Randomization svsiem. def., 62; 65, 76,
84, 185, 187; in cxperiment, 157; 218,

RAQ, C. R, 236,

Ratio, 55, 63, 160, 216,
ability vaiio.)

Reason, 14, 29, 43, 268,

Recording, 150, 157 I[,, 160, 244,

Reduction, vule of, 8.

Regression, 250 ff.
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Relevancy, 14611, 132, 155,
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173, 188, 190, 195, 204, sclf, 240; 242,
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160, 233,
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Soclology, B, 91, 168, 247, 252,
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SPROW LS, ., 3,
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Standard evrop: def.. 2006, (See also
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quota, 193 modch 193; small, 233,

{See also Inrimf.?mf inspection.)
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152 0.: nar
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SITANNQN, C.. HZ.
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Sigma:r capital
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58, 61, 62,
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Unrverse: see Population.
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utility, 9114.; other. 98 simple, 98;
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